l3cube-pune commited on
Commit
ed33c16
1 Parent(s): c9accdd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -58
README.md CHANGED
@@ -5,14 +5,25 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
-
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
 
14
 
15
- <!--- Describe your model here -->
 
 
 
 
 
 
 
 
 
16
 
17
  ## Usage (Sentence-Transformers)
18
 
@@ -70,57 +81,3 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
70
  print("Sentence embeddings:")
71
  print(sentence_embeddings)
72
  ```
73
-
74
-
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
-
82
-
83
- ## Training
84
- The model was trained with the parameters:
85
-
86
- **DataLoader**:
87
-
88
- `torch.utils.data.dataloader.DataLoader` of length 719 with parameters:
89
- ```
90
- {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
- ```
92
-
93
- **Loss**:
94
-
95
- `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
96
-
97
- Parameters of the fit()-Method:
98
- ```
99
- {
100
- "epochs": 4,
101
- "evaluation_steps": 0,
102
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
103
- "max_grad_norm": 1,
104
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
- "optimizer_params": {
106
- "lr": 2e-05
107
- },
108
- "scheduler": "WarmupLinear",
109
- "steps_per_epoch": null,
110
- "warmup_steps": 287,
111
- "weight_decay": 0.01
112
- }
113
- ```
114
-
115
-
116
- ## Full Model Architecture
117
- ```
118
- SentenceTransformer(
119
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
120
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
- )
122
- ```
123
-
124
- ## Citing & Authors
125
-
126
- <!--- Describe where people can find more information -->
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ license: cc-by-4.0
9
+ language: bn
10
  ---
11
 
12
+ # BengaliSBERT-STS
13
 
14
+ This is a BengaliSBERT model (l3cube-pune/bengali-sentence-bert-nli) fine-tuned on the STS dataset. <br>
15
+ Released as a part of project MahaNLP : https://github.com/l3cube-pune/MarathiNLP <br>
16
 
17
+ More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187)
18
+
19
+ ```
20
+ @article{joshi2022l3cubemahasbert,
21
+ title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
22
+ author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
23
+ journal={arXiv preprint arXiv:2211.11187},
24
+ year={2022}
25
+ }
26
+ ```
27
 
28
  ## Usage (Sentence-Transformers)
29
 
 
81
  print("Sentence embeddings:")
82
  print(sentence_embeddings)
83
  ```