Text Generation
Transformers
PyTorch
English
Chinese
Inference Endpoints
myscarlet commited on
Commit
a83cff4
1 Parent(s): e1174ca
README.md CHANGED
@@ -1,3 +1,87 @@
1
  ---
2
  license: cc-by-nc-nd-4.0
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-nd-4.0
3
+ datasets:
4
+ - kwaikeg/KAgentInstruct
5
+ - kwaikeg/KAgentBench
6
+ language:
7
+ - en
8
+ - zh
9
+ pipeline_tag: text-generation
10
  ---
11
+
12
+
13
+ KwaiAgents ([Github](https://github.com/KwaiKEG/KwaiAgents)) is a series of Agent-related works open-sourced by the [KwaiKEG](https://github.com/KwaiKEG) from [Kuaishou Technology](https://www.kuaishou.com/en). The open-sourced content includes:
14
+
15
+ 1. **KAgentSys-Lite**: An experimental Agent Loop implemented based on open-source search engines, browsers, time, calendar, weather, and other tools, which is only missing the memory mechanism and some search capabilities compared to the system in the paper.
16
+ 2. **KAgentLMs**: A series of large language models with Agent capabilities such as planning, reflection, and tool-use, acquired through the Meta-agent tuning proposed in the paper.
17
+ 3. **KAgentInstruct**: Fine-tuned data of instructions generated by the Meta-agent in the paper.
18
+ 4. **KAgentBench**: Over 3,000 human-edited, automated evaluation data for testing Agent capabilities, with evaluation dimensions including planning, tool-use, reflection, concluding, and profiling.
19
+
20
+
21
+ ## User Guide
22
+
23
+ ### Direct usage
24
+
25
+ Tutorial can refer to [QwenLM/Qwen](https://github.com/QwenLM/Qwen)
26
+ ```python
27
+ from transformers import AutoModelForCausalLM, AutoTokenizer
28
+ from transformers.generation import GenerationConfig
29
+
30
+ tokenizer = AutoTokenizer.from_pretrained("kwaikeg/kagentlms_qwen_7b_mat", trust_remote_code=True)
31
+
32
+ model = AutoModelForCausalLM.from_pretrained(
33
+ "kwaikeg/kagentlms_qwen_14b_mat",
34
+ device_map="auto",
35
+ trust_remote_code=True
36
+ ).eval()
37
+
38
+ response, history = model.chat(tokenizer, "你好", history=None)
39
+ print(response)
40
+ ```
41
+
42
+ ### AgentLMs as service
43
+ We recommend using [vLLM](https://github.com/vllm-project/vllm) and [FastChat](https://github.com/lm-sys/FastChat) to deploy the model inference service. First, you need to install the corresponding packages (for detailed usage, please refer to the documentation of the two projects):
44
+ ```bash
45
+ pip install vllm
46
+ pip install "fschat[model_worker,webui]"
47
+ ```
48
+ To deploy KAgentLMs, you first need to start the controller in one terminal.
49
+ ```bash
50
+ python -m fastchat.serve.controller
51
+ ```
52
+ Secondly, you should use the following command in another terminal for single-gpu inference service deployment:
53
+ ```bash
54
+ python -m fastchat.serve.vllm_worker --model-path $model_path --trust-remote-code
55
+ ```
56
+ Where `$model_path` is the local path of the model downloaded. If the GPU does not support Bfloat16, you can add `--dtype half` to the command line.
57
+
58
+ Thirdly, start the REST API server in the third terminal.
59
+ ```bash
60
+ python -m fastchat.serve.openai_api_server --host localhost --port 8888
61
+ ```
62
+
63
+ Finally, you can use the curl command to invoke the model same as the OpenAI calling format. Here's an example:
64
+ ```bash
65
+ curl http://localhost:8888/v1/chat/completions \
66
+ -H "Content-Type: application/json" \
67
+ -d '{"model": "kagentlms_qwen_7b_mat", "messages": [{"role": "user", "content": "Who is Andy Lau"}]}'
68
+ ```
69
+
70
+ ### Citation
71
+ ```
72
+ @article{pan2023kwaiagents,
73
+ author = {Haojie Pan and
74
+ Zepeng Zhai and
75
+ Hao Yuan and
76
+ Yaojia Lv and
77
+ Ruiji Fu and
78
+ Ming Liu and
79
+ Zhongyuan Wang and
80
+ Bing Qin
81
+ },
82
+ title = {KwaiAgents: Generalized Information-seeking Agent System with Large Language Models},
83
+ journal = {CoRR},
84
+ volume = {abs/2312.04889},
85
+ year = {2023}
86
+ }
87
+ ```
config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bbfbe0fae40b5fcd88b22b124368cdc36c2f54bb7a12d71c8b3c17d4bd47da7
3
+ size 1141
configuration_qwen.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from transformers import PretrainedConfig
7
+
8
+
9
+ class QWenConfig(PretrainedConfig):
10
+ model_type = "qwen"
11
+ keys_to_ignore_at_inference = ["past_key_values"]
12
+
13
+ def __init__(
14
+ self,
15
+ vocab_size=151936,
16
+ hidden_size=4096,
17
+ num_hidden_layers=32,
18
+ num_attention_heads=32,
19
+ emb_dropout_prob=0.0,
20
+ attn_dropout_prob=0.0,
21
+ layer_norm_epsilon=1e-6,
22
+ initializer_range=0.02,
23
+ max_position_embeddings=8192,
24
+ scale_attn_weights=True,
25
+ use_cache=True,
26
+ bf16=False,
27
+ fp16=False,
28
+ fp32=False,
29
+ kv_channels=128,
30
+ rotary_pct=1.0,
31
+ rotary_emb_base=10000,
32
+ use_dynamic_ntk=True,
33
+ use_logn_attn=True,
34
+ use_flash_attn="auto",
35
+ intermediate_size=22016,
36
+ no_bias=True,
37
+ tie_word_embeddings=False,
38
+ use_cache_quantization=False,
39
+ use_cache_kernel=False,
40
+ softmax_in_fp32=False,
41
+ **kwargs,
42
+ ):
43
+ self.vocab_size = vocab_size
44
+ self.hidden_size = hidden_size
45
+ self.intermediate_size = intermediate_size
46
+ self.num_hidden_layers = num_hidden_layers
47
+ self.num_attention_heads = num_attention_heads
48
+ self.emb_dropout_prob = emb_dropout_prob
49
+ self.attn_dropout_prob = attn_dropout_prob
50
+ self.layer_norm_epsilon = layer_norm_epsilon
51
+ self.initializer_range = initializer_range
52
+ self.scale_attn_weights = scale_attn_weights
53
+ self.use_cache = use_cache
54
+ self.max_position_embeddings = max_position_embeddings
55
+ self.bf16 = bf16
56
+ self.fp16 = fp16
57
+ self.fp32 = fp32
58
+ self.kv_channels = kv_channels
59
+ self.rotary_pct = rotary_pct
60
+ self.rotary_emb_base = rotary_emb_base
61
+ self.use_dynamic_ntk = use_dynamic_ntk
62
+ self.use_logn_attn = use_logn_attn
63
+ self.use_flash_attn = use_flash_attn
64
+ self.no_bias = no_bias
65
+ self.use_cache_quantization = use_cache_quantization
66
+ self.use_cache_kernel = use_cache_kernel
67
+ self.softmax_in_fp32 = softmax_in_fp32
68
+ super().__init__(
69
+ tie_word_embeddings=tie_word_embeddings,
70
+ **kwargs
71
+ )
cpp_kernels.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils import cpp_extension
2
+ import pathlib
3
+ import os
4
+ import subprocess
5
+
6
+ def _get_cuda_bare_metal_version(cuda_dir):
7
+ raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
8
+ universal_newlines=True)
9
+ output = raw_output.split()
10
+ release_idx = output.index("release") + 1
11
+ release = output[release_idx].split(".")
12
+ bare_metal_major = release[0]
13
+ bare_metal_minor = release[1][0]
14
+
15
+ return raw_output, bare_metal_major, bare_metal_minor
16
+
17
+ def _create_build_dir(buildpath):
18
+ try:
19
+ os.mkdir(buildpath)
20
+ except OSError:
21
+ if not os.path.isdir(buildpath):
22
+ print(f"Creation of the build directory {buildpath} failed")
23
+
24
+ # Check if cuda 11 is installed for compute capability 8.0
25
+ cc_flag = []
26
+ _, bare_metal_major, bare_metal_minor = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
27
+ if int(bare_metal_major) >= 11:
28
+ cc_flag.append('-gencode')
29
+ cc_flag.append('arch=compute_80,code=sm_80')
30
+ if int(bare_metal_minor) >= 7:
31
+ cc_flag.append('-gencode')
32
+ cc_flag.append('arch=compute_90,code=sm_90')
33
+
34
+ # Build path
35
+ srcpath = pathlib.Path(__file__).parent.absolute()
36
+ buildpath = srcpath / 'build'
37
+ _create_build_dir(buildpath)
38
+
39
+ def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
40
+ return cpp_extension.load(
41
+ name=name,
42
+ sources=sources,
43
+ build_directory=buildpath,
44
+ extra_cflags=['-O3', ],
45
+ extra_cuda_cflags=['-O3',
46
+ '-gencode', 'arch=compute_70,code=sm_70',
47
+ '--use_fast_math'] + extra_cuda_flags + cc_flag,
48
+ verbose=1
49
+ )
50
+
51
+ extra_flags = []
52
+
53
+ cache_autogptq_cuda_256_sources = ["./cache_autogptq_cuda_256.cpp",
54
+ "./cache_autogptq_cuda_kernel_256.cu"]
55
+ cache_autogptq_cuda_256 = _cpp_extention_load_helper("cache_autogptq_cuda_256", cache_autogptq_cuda_256_sources, extra_flags)
generation_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45509c211713aa9b5b6246c0e944c6d65785a40a7fe9fd6206030cffe39fd481
3
+ size 250
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step4175
modeling_qwen.py ADDED
@@ -0,0 +1,1363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import copy
7
+ import importlib
8
+ import math
9
+ import pathlib
10
+ from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
11
+
12
+ import torch
13
+ import torch.nn.functional as F
14
+ import torch.utils.checkpoint
15
+ import warnings
16
+
17
+ from torch.nn import CrossEntropyLoss
18
+ from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
19
+ from transformers.generation.logits_process import LogitsProcessorList
20
+
21
+ if TYPE_CHECKING:
22
+ from transformers.generation.streamers import BaseStreamer
23
+ from transformers.generation.utils import GenerateOutput
24
+ from transformers.modeling_outputs import (
25
+ BaseModelOutputWithPast,
26
+ CausalLMOutputWithPast,
27
+ )
28
+ from transformers.modeling_utils import PreTrainedModel
29
+ from transformers.utils import logging
30
+
31
+ try:
32
+ from einops import rearrange
33
+ except ImportError:
34
+ rearrange = None
35
+ from torch import nn
36
+
37
+ SUPPORT_CUDA = torch.cuda.is_available()
38
+ SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
39
+ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
40
+ SUPPORT_TORCH2 = hasattr(torch, '__version__') and int(torch.__version__.split(".")[0]) >= 2
41
+
42
+
43
+ from .configuration_qwen import QWenConfig
44
+ from .qwen_generation_utils import (
45
+ HistoryType,
46
+ make_context,
47
+ decode_tokens,
48
+ get_stop_words_ids,
49
+ StopWordsLogitsProcessor,
50
+ )
51
+
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+ _CHECKPOINT_FOR_DOC = "qwen"
56
+ _CONFIG_FOR_DOC = "QWenConfig"
57
+
58
+ QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
59
+
60
+ _ERROR_BAD_CHAT_FORMAT = """\
61
+ We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
62
+ If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
63
+ 我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
64
+ 如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
65
+ """
66
+
67
+ _SENTINEL = object()
68
+ _ERROR_STREAM_IN_CHAT = """\
69
+ Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
70
+ 向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
71
+ """
72
+
73
+ _ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED = """\
74
+ We detect you have activated flash attention support, but running model computation on CPU. Please make sure that your input data has been placed on GPU. If you actually want to run CPU computation, please following the readme and set device_map="cpu" to disable flash attention when loading the model (calling AutoModelForCausalLM.from_pretrained).
75
+ 检测到您的模型已激活了flash attention支持,但正在执行CPU运算任务。如使用flash attention,请您确认模型输入已经传到GPU上。如果您确认要执行CPU运算,请您在载入模型(调用AutoModelForCausalLM.from_pretrained)时,按照readme说法,指定device_map="cpu"以禁用flash attention。
76
+ """
77
+
78
+ apply_rotary_emb_func = None
79
+ rms_norm = None
80
+ flash_attn_unpadded_func = None
81
+ flash_attn_func = None
82
+
83
+ def _import_flash_attn():
84
+ global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func, flash_attn_func
85
+ try:
86
+ from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
87
+ apply_rotary_emb_func = __apply_rotary_emb_func
88
+ except ImportError:
89
+ logger.warn(
90
+ "Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency "
91
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary"
92
+ )
93
+
94
+ try:
95
+ from flash_attn.ops.rms_norm import rms_norm as __rms_norm
96
+ rms_norm = __rms_norm
97
+ except ImportError:
98
+ logger.warn(
99
+ "Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency "
100
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm"
101
+ )
102
+
103
+ try:
104
+ import flash_attn
105
+ _flash_attn_func = None
106
+ if not hasattr(flash_attn, '__version__'):
107
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
108
+ else:
109
+ if int(flash_attn.__version__.split(".")[0]) >= 2:
110
+ if int(flash_attn.__version__.split(".")[1]) >= 1:
111
+ from flash_attn.flash_attn_interface import flash_attn_func as _flash_attn_func
112
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
113
+ else:
114
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
115
+ flash_attn_unpadded_func = __flash_attn_unpadded_func
116
+ flash_attn_func = _flash_attn_func
117
+ except ImportError:
118
+ logger.warn(
119
+ "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
120
+ "https://github.com/Dao-AILab/flash-attention"
121
+ )
122
+
123
+ def quantize_cache_v(fdata, bits, qmax, qmin):
124
+ # b, s, head, h-dim->b, head, s, h-dim
125
+ qtype = torch.uint8
126
+ device = fdata.device
127
+ shape = fdata.shape
128
+
129
+ fdata_cal = torch.flatten(fdata, 2)
130
+ fmax = torch.amax(fdata_cal, dim=-1, keepdim=True)
131
+ fmin = torch.amin(fdata_cal, dim=-1, keepdim=True)
132
+ # Compute params
133
+ if qmax.device != fmax.device:
134
+ qmax = qmax.to(device)
135
+ qmin = qmin.to(device)
136
+ scale = (fmax - fmin) / (qmax - qmin)
137
+ zero = qmin - fmin / scale
138
+ scale = scale.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
139
+ zero = zero.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
140
+ # Quantize
141
+ res_data = fdata / scale + zero
142
+ qdata = torch.clamp(res_data, qmin, qmax).to(qtype)
143
+ return qdata.contiguous(), scale, zero
144
+
145
+ def dequantize_cache_torch(qdata, scale, zero):
146
+ data = scale * (qdata - zero)
147
+ return data
148
+
149
+ class FlashSelfAttention(torch.nn.Module):
150
+ def __init__(
151
+ self,
152
+ causal=False,
153
+ softmax_scale=None,
154
+ attention_dropout=0.0,
155
+ ):
156
+ super().__init__()
157
+ assert flash_attn_unpadded_func is not None, (
158
+ "Please install FlashAttention first, " "e.g., with pip install flash-attn"
159
+ )
160
+ assert (
161
+ rearrange is not None
162
+ ), "Please install einops first, e.g., with pip install einops"
163
+ self.causal = causal
164
+ self.softmax_scale = softmax_scale
165
+ self.dropout_p = attention_dropout
166
+
167
+ def unpad_input(self, hidden_states, attention_mask):
168
+ valid_mask = attention_mask.squeeze(1).squeeze(1).eq(0)
169
+ seqlens_in_batch = valid_mask.sum(dim=-1, dtype=torch.int32)
170
+ indices = torch.nonzero(valid_mask.flatten(), as_tuple=False).flatten()
171
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
172
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
173
+ hidden_states = hidden_states[indices]
174
+ return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
175
+
176
+ def pad_input(self, hidden_states, indices, batch, seqlen):
177
+ output = torch.zeros(batch * seqlen, *hidden_states.shape[1:], device=hidden_states.device,
178
+ dtype=hidden_states.dtype)
179
+ output[indices] = hidden_states
180
+ return rearrange(output, '(b s) ... -> b s ...', b=batch)
181
+
182
+ def forward(self, q, k, v, attention_mask=None):
183
+ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
184
+ assert all((i.is_cuda for i in (q, k, v)))
185
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
186
+ seqlen_k = k.shape[1]
187
+ seqlen_out = seqlen_q
188
+
189
+ if flash_attn_func is not None and batch_size == 1:
190
+ dropout_p = self.dropout_p if self.training else 0
191
+ output = flash_attn_func(q, k, v, dropout_p, softmax_scale=self.softmax_scale, causal=self.causal)
192
+ return output
193
+
194
+ q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
195
+ cu_seqlens_q = torch.arange(
196
+ 0,
197
+ (batch_size + 1) * seqlen_q,
198
+ step=seqlen_q,
199
+ dtype=torch.int32,
200
+ device=q.device,
201
+ )
202
+
203
+ if batch_size > 1 and attention_mask is not None:
204
+ k, indices_k, cu_seqlens_k, seqlen_k = self.unpad_input(k, attention_mask)
205
+ if q.size(0) == v.size(0):
206
+ q = q[indices_k]
207
+ cu_seqlens_q = cu_seqlens_k
208
+ seqlen_q = seqlen_k
209
+ v = v[indices_k]
210
+ else:
211
+ cu_seqlens_k = torch.arange(
212
+ 0,
213
+ (batch_size + 1) * seqlen_k,
214
+ step=seqlen_k,
215
+ dtype=torch.int32,
216
+ device=q.device,
217
+ )
218
+
219
+ if self.training:
220
+ assert seqlen_k == seqlen_q
221
+ is_causal = self.causal
222
+ dropout_p = self.dropout_p
223
+ else:
224
+ is_causal = seqlen_q == seqlen_k
225
+ dropout_p = 0
226
+
227
+ output = flash_attn_unpadded_func(
228
+ q,
229
+ k,
230
+ v,
231
+ cu_seqlens_q,
232
+ cu_seqlens_k,
233
+ seqlen_q,
234
+ seqlen_k,
235
+ dropout_p,
236
+ softmax_scale=self.softmax_scale,
237
+ causal=is_causal,
238
+ )
239
+ if batch_size > 1 and attention_mask is not None and seqlen_q == seqlen_k:
240
+ output = self.pad_input(output, indices_k, batch_size, seqlen_out)
241
+ else:
242
+ new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:]
243
+ output = output.view(new_shape)
244
+ return output
245
+
246
+
247
+ class QWenAttention(nn.Module):
248
+ def __init__(self, config):
249
+ super().__init__()
250
+
251
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
252
+ self.seq_length = config.seq_length
253
+
254
+ self.hidden_size = config.hidden_size
255
+ self.split_size = config.hidden_size
256
+ self.num_heads = config.num_attention_heads
257
+ self.head_dim = self.hidden_size // self.num_heads
258
+
259
+ self.use_flash_attn = config.use_flash_attn
260
+ self.scale_attn_weights = True
261
+
262
+ self.projection_size = config.kv_channels * config.num_attention_heads
263
+
264
+ assert self.projection_size % config.num_attention_heads == 0
265
+ self.hidden_size_per_attention_head = (
266
+ self.projection_size // config.num_attention_heads
267
+ )
268
+
269
+ self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
270
+
271
+ self.c_proj = nn.Linear(
272
+ config.hidden_size, self.projection_size, bias=not config.no_bias
273
+ )
274
+
275
+ self.is_fp32 = not (config.bf16 or config.fp16)
276
+ if (
277
+ self.use_flash_attn
278
+ and flash_attn_unpadded_func is not None
279
+ and not self.is_fp32
280
+ ):
281
+ self.core_attention_flash = FlashSelfAttention(
282
+ causal=True, attention_dropout=config.attn_dropout_prob
283
+ )
284
+ self.bf16 = config.bf16
285
+
286
+ self.use_dynamic_ntk = config.use_dynamic_ntk
287
+ self.use_logn_attn = config.use_logn_attn
288
+
289
+ logn_list = [
290
+ math.log(i, self.seq_length) if i > self.seq_length else 1
291
+ for i in range(1, 32768)
292
+ ]
293
+ logn_tensor = torch.tensor(logn_list)[None, :, None, None]
294
+ self.register_buffer("logn_tensor", logn_tensor, persistent=False)
295
+
296
+ self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
297
+ self.softmax_in_fp32 = config.softmax_in_fp32 if hasattr(config, 'softmax_in_fp32') else False
298
+ self.use_cache_quantization = config.use_cache_quantization if hasattr(config, 'use_cache_quantization') else False
299
+ self.use_cache_kernel = config.use_cache_kernel if hasattr(config,'use_cache_kernel') else False
300
+ cache_dtype = torch.float
301
+ if self.bf16:
302
+ cache_dtype=torch.bfloat16
303
+ elif config.fp16:
304
+ cache_dtype = torch.float16
305
+ self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
306
+ self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
307
+
308
+ if config.use_cache_quantization and config.use_cache_kernel:
309
+ # pre check if the support files existing
310
+ module_root = pathlib.Path(__file__).parent
311
+ src_files = ("cache_autogptq_cuda_256.cpp", "cache_autogptq_cuda_kernel_256.cu")
312
+ if any(not (module_root/src).is_file() for src in src_files):
313
+ warnings.warn("KV cache kernel source files (.cpp and .cu) not found.")
314
+ self.cache_kernels = None
315
+ else:
316
+ try:
317
+ from .cpp_kernels import cache_autogptq_cuda_256
318
+ self.cache_kernels = cache_autogptq_cuda_256
319
+ except ImportError:
320
+ warnings.warn("Failed to import KV cache kernels.")
321
+ self.cache_kernels = None
322
+
323
+ def _attn(self, query, key, value, causal_mask=None, attention_mask=None, head_mask=None):
324
+ device = query.device
325
+ if self.use_cache_quantization:
326
+ qk, qk_scale, qk_zero = key
327
+ if self.use_cache_kernel and self.cache_kernels is not None:
328
+ shape = query.shape[:-1] + (qk.shape[-2],)
329
+ attn_weights = torch.zeros(shape, dtype=torch.float16, device=device)
330
+ self.cache_kernels.vecquant8matmul_batched_faster_old(
331
+ query.contiguous() if query.dtype == torch.float16 else query.to(torch.float16).contiguous(),
332
+ qk.transpose(-1, -2).contiguous(),
333
+ attn_weights,
334
+ qk_scale.contiguous() if qk_scale.dtype == torch.float16 else qk_scale.to(torch.float16).contiguous(),
335
+ qk_zero.contiguous()if qk_zero.dtype == torch.float16 else qk_zero.to(torch.float16).contiguous())
336
+ # attn_weights = attn_weights.to(query.dtype).contiguous()
337
+ else:
338
+ key = dequantize_cache_torch(qk, qk_scale, qk_zero)
339
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
340
+ else:
341
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
342
+
343
+ if self.scale_attn_weights:
344
+ if self.use_cache_quantization:
345
+ size_temp = value[0].size(-1)
346
+ else:
347
+ size_temp = value.size(-1)
348
+ attn_weights = attn_weights / (size_temp ** 0.5)
349
+
350
+ mask_value = torch.finfo(attn_weights.dtype).min
351
+ if causal_mask is not None:
352
+ attn_weights = torch.where(
353
+ causal_mask, attn_weights.to(attn_weights.dtype), mask_value
354
+ )
355
+
356
+ if attention_mask is not None:
357
+ attn_weights = attn_weights + attention_mask
358
+
359
+ if self.softmax_in_fp32:
360
+ attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1)
361
+ else:
362
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
363
+
364
+ attn_weights = attn_weights.type(query.dtype)
365
+ attn_weights = self.attn_dropout(attn_weights)
366
+
367
+ if head_mask is not None:
368
+ attn_weights = attn_weights * head_mask
369
+
370
+ if self.use_cache_quantization:
371
+ qv, qv_scale, qv_zero = value
372
+ if self.use_cache_kernel and self.cache_kernels is not None:
373
+ shape = attn_weights.shape[:-1] + (query.shape[-1],)
374
+ attn_output = torch.zeros(shape, dtype=torch.float16, device=device)
375
+ self.cache_kernels.vecquant8matmul_batched_column_compression_faster_old(
376
+ attn_weights.contiguous() if attn_weights.dtype == torch.float16 else attn_weights.to(torch.float16).contiguous(),
377
+ qv.contiguous(), # dtype: int32
378
+ attn_output,
379
+ qv_scale.contiguous() if qv_scale.dtype == torch.float16 else qv_scale.to(torch.float16).contiguous(),
380
+ qv_zero.contiguous() if qv_zero.dtype == torch.float16 else qv_zero.to(torch.float16).contiguous())
381
+ if attn_output.dtype != query.dtype:
382
+ attn_output = attn_output.to(query.dtype)
383
+ attn_weights = attn_weights.to(query.dtype)
384
+ else:
385
+ value = dequantize_cache_torch(qv, qv_scale, qv_zero)
386
+ attn_output = torch.matmul(attn_weights, value)
387
+ else:
388
+ attn_output = torch.matmul(attn_weights, value)
389
+
390
+ attn_output = attn_output.transpose(1, 2)
391
+
392
+ return attn_output, attn_weights
393
+
394
+ def _split_heads(self, tensor, num_heads, attn_head_size):
395
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
396
+ tensor = tensor.view(new_shape)
397
+ return tensor
398
+
399
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
400
+ tensor = tensor.contiguous()
401
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
402
+ return tensor.view(new_shape)
403
+
404
+ def forward(
405
+ self,
406
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
407
+ rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
408
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
409
+ attention_mask: Optional[torch.FloatTensor] = None,
410
+ head_mask: Optional[torch.FloatTensor] = None,
411
+ encoder_hidden_states: Optional[torch.Tensor] = None,
412
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
413
+ output_attentions: Optional[bool] = False,
414
+ use_cache: Optional[bool] = False,
415
+ ):
416
+ mixed_x_layer = self.c_attn(hidden_states)
417
+
418
+ query, key, value = mixed_x_layer.split(self.split_size, dim=2)
419
+
420
+ query = self._split_heads(query, self.num_heads, self.head_dim)
421
+ key = self._split_heads(key, self.num_heads, self.head_dim)
422
+ value = self._split_heads(value, self.num_heads, self.head_dim)
423
+
424
+ if rotary_pos_emb_list is not None:
425
+ cur_len = query.shape[1]
426
+ if len(rotary_pos_emb_list) == 1:
427
+ rotary_pos_emb = rotary_pos_emb_list[0]
428
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
429
+ rotary_pos_emb = (rotary_pos_emb,) * 2
430
+ q_pos_emb, k_pos_emb = rotary_pos_emb
431
+ # Slice the pos emb for current inference
432
+ query = apply_rotary_pos_emb(query, q_pos_emb)
433
+ key = apply_rotary_pos_emb(key, k_pos_emb)
434
+ else:
435
+ query_list = []
436
+ key_list = []
437
+ for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
438
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
439
+ rotary_pos_emb = (rotary_pos_emb,) * 2
440
+ q_pos_emb, k_pos_emb = rotary_pos_emb
441
+ # Slice the pos emb for current inference
442
+ query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
443
+ key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
444
+ query = torch.cat(query_list, dim=0)
445
+ key = torch.cat(key_list, dim=0)
446
+
447
+ if self.use_cache_quantization:
448
+ key = quantize_cache_v(key.permute(0, 2, 1, 3),
449
+ bits=8,
450
+ qmin=self.cache_qmin,
451
+ qmax=self.cache_qmax)
452
+ value = quantize_cache_v(value.permute(0, 2, 1, 3),
453
+ bits=8,
454
+ qmin=self.cache_qmin,
455
+ qmax=self.cache_qmax)
456
+
457
+
458
+ if layer_past is not None:
459
+ past_key, past_value = layer_past[0], layer_past[1]
460
+ if self.use_cache_quantization:
461
+ # use_cache_quantization:
462
+ # present=((q_key,key_scale,key_zero_point),
463
+ # (q_value,value_scale,value_zero_point))
464
+ key = (torch.cat((past_key[0], key[0]), dim=2),
465
+ torch.cat((past_key[1], key[1]), dim=2),
466
+ torch.cat((past_key[2], key[2]), dim=2))
467
+ value = (torch.cat((past_value[0], value[0]), dim=2),
468
+ torch.cat((past_value[1], value[1]), dim=2),
469
+ torch.cat((past_value[2], value[2]), dim=2))
470
+ else:
471
+ # not use_cache_quantization:
472
+ # present=(key,value)
473
+ key = torch.cat((past_key, key), dim=1)
474
+ value = torch.cat((past_value, value), dim=1)
475
+
476
+ if use_cache:
477
+ present = (key, value)
478
+ else:
479
+ present = None
480
+
481
+ key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
482
+ if key_size > self.seq_length and self.use_logn_attn and not self.training:
483
+ if self.use_cache_quantization:
484
+ seq_start = key[0].size(2) - query.size(1)
485
+ seq_end = key[0].size(2)
486
+ else:
487
+ seq_start = key.size(1) - query.size(1)
488
+ seq_end = key.size(1)
489
+ logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
490
+ query = query * logn_tensor.expand_as(query)
491
+
492
+ if (
493
+ self.use_flash_attn
494
+ and flash_attn_unpadded_func is not None
495
+ and not self.is_fp32
496
+ and query.is_cuda
497
+ ):
498
+ q, k, v = query, key, value
499
+ attn_output = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
500
+ else:
501
+ key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
502
+ if query.size(1) == key_size:
503
+ causal_mask = torch.tril(
504
+ torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)
505
+ ).view(1, 1, key_size, key_size)
506
+ else:
507
+ causal_mask = None
508
+ query = query.permute(0, 2, 1, 3)
509
+ if not self.use_cache_quantization:
510
+ key = key.permute(0, 2, 1, 3)
511
+ value = value.permute(0, 2, 1, 3)
512
+ if (
513
+ causal_mask is None
514
+ and self.use_flash_attn
515
+ and flash_attn_unpadded_func is not None
516
+ and not self.is_fp32
517
+ and not query.is_cuda
518
+ ):
519
+ raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
520
+
521
+ if not self.use_cache_quantization and SUPPORT_TORCH2:
522
+ if attention_mask is not None:
523
+ attention_mask = attention_mask.expand(-1, -1, query.size(2), -1)
524
+ if causal_mask is not None:
525
+ attention_mask = attention_mask.masked_fill(~causal_mask, torch.finfo(query.dtype).min)
526
+ else:
527
+ attention_mask = causal_mask
528
+ attn_output = F.scaled_dot_product_attention(
529
+ query, key, value, attn_mask=attention_mask
530
+ ).transpose(1, 2)
531
+ attn_weight = None
532
+ else:
533
+ attn_output, attn_weight = self._attn(
534
+ query, key, value, causal_mask, attention_mask, head_mask
535
+ )
536
+ context_layer = self._merge_heads(
537
+ attn_output, self.num_heads, self.head_dim
538
+ )
539
+
540
+ attn_output = self.c_proj(context_layer)
541
+
542
+ outputs = (attn_output, present)
543
+ if output_attentions:
544
+ if (
545
+ self.use_flash_attn
546
+ and flash_attn_unpadded_func is not None
547
+ and not self.is_fp32
548
+ ):
549
+ raise ValueError("Cannot output attentions while using flash-attn")
550
+ elif not self.use_cache_quantization and SUPPORT_TORCH2:
551
+ raise ValueError("Cannot output attentions while using scaled_dot_product_attention")
552
+ else:
553
+ outputs += (attn_weight,)
554
+
555
+ return outputs
556
+
557
+
558
+ class QWenMLP(nn.Module):
559
+ def __init__(self, config):
560
+ super().__init__()
561
+ self.w1 = nn.Linear(
562
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
563
+ )
564
+ self.w2 = nn.Linear(
565
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
566
+ )
567
+ ff_dim_in = config.intermediate_size // 2
568
+ self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
569
+
570
+ def forward(self, hidden_states):
571
+ a1 = self.w1(hidden_states)
572
+ a2 = self.w2(hidden_states)
573
+ intermediate_parallel = a1 * F.silu(a2)
574
+ output = self.c_proj(intermediate_parallel)
575
+ return output
576
+
577
+
578
+ class QWenBlock(nn.Module):
579
+ def __init__(self, config):
580
+ super().__init__()
581
+ hidden_size = config.hidden_size
582
+ self.bf16 = config.bf16
583
+
584
+ self.ln_1 = RMSNorm(
585
+ hidden_size,
586
+ eps=config.layer_norm_epsilon,
587
+ )
588
+ self.attn = QWenAttention(config)
589
+ self.ln_2 = RMSNorm(
590
+ hidden_size,
591
+ eps=config.layer_norm_epsilon,
592
+ )
593
+
594
+ self.mlp = QWenMLP(config)
595
+
596
+ def forward(
597
+ self,
598
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
599
+ rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
600
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
601
+ attention_mask: Optional[torch.FloatTensor] = None,
602
+ head_mask: Optional[torch.FloatTensor] = None,
603
+ encoder_hidden_states: Optional[torch.Tensor] = None,
604
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
605
+ use_cache: Optional[bool] = False,
606
+ output_attentions: Optional[bool] = False,
607
+ ):
608
+ layernorm_output = self.ln_1(hidden_states)
609
+
610
+ attn_outputs = self.attn(
611
+ layernorm_output,
612
+ rotary_pos_emb_list,
613
+ layer_past=layer_past,
614
+ attention_mask=attention_mask,
615
+ head_mask=head_mask,
616
+ use_cache=use_cache,
617
+ output_attentions=output_attentions,
618
+ )
619
+ attn_output = attn_outputs[0]
620
+
621
+ outputs = attn_outputs[1:]
622
+
623
+ residual = hidden_states
624
+ layernorm_input = attn_output + residual
625
+
626
+ layernorm_output = self.ln_2(layernorm_input)
627
+
628
+ residual = layernorm_input
629
+ mlp_output = self.mlp(layernorm_output)
630
+ hidden_states = residual + mlp_output
631
+
632
+ if use_cache:
633
+ outputs = (hidden_states,) + outputs
634
+ else:
635
+ outputs = (hidden_states,) + outputs[1:]
636
+
637
+ return outputs
638
+
639
+
640
+ class QWenPreTrainedModel(PreTrainedModel):
641
+ config_class = QWenConfig
642
+ base_model_prefix = "transformer"
643
+ is_parallelizable = False
644
+ supports_gradient_checkpointing = True
645
+ _no_split_modules = ["QWenBlock"]
646
+ _skip_keys_device_placement = "past_key_values"
647
+
648
+ def __init__(self, *inputs, **kwargs):
649
+ super().__init__(*inputs, **kwargs)
650
+
651
+ def _init_weights(self, module):
652
+ """Initialize the weights."""
653
+ if isinstance(module, nn.Linear):
654
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
655
+ if module.bias is not None:
656
+ module.bias.data.zero_()
657
+ elif isinstance(module, nn.Embedding):
658
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
659
+ if module.padding_idx is not None:
660
+ module.weight.data[module.padding_idx].zero_()
661
+ elif isinstance(module, RMSNorm):
662
+ module.weight.data.fill_(1.0)
663
+
664
+ for name, p in module.named_parameters():
665
+ if name == "c_proj.weight":
666
+ p.data.normal_(
667
+ mean=0.0,
668
+ std=(
669
+ self.config.initializer_range
670
+ / math.sqrt(2 * self.config.num_hidden_layers)
671
+ ),
672
+ )
673
+
674
+ def _set_gradient_checkpointing(self, module, value=False):
675
+ if isinstance(module, QWenModel):
676
+ module.gradient_checkpointing = value
677
+
678
+
679
+ class QWenModel(QWenPreTrainedModel):
680
+ _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
681
+
682
+ def __init__(self, config):
683
+ super().__init__(config)
684
+ self.vocab_size = config.vocab_size
685
+ self.num_hidden_layers = config.num_hidden_layers
686
+ self.embed_dim = config.hidden_size
687
+ self.use_cache_quantization = self.config.use_cache_quantization if hasattr(self.config, 'use_cache_quantization') else False
688
+
689
+ self.gradient_checkpointing = False
690
+ self.use_dynamic_ntk = config.use_dynamic_ntk
691
+ self.seq_length = config.seq_length
692
+
693
+ self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
694
+
695
+ self.drop = nn.Dropout(config.emb_dropout_prob)
696
+
697
+ if config.rotary_pct == 1.0:
698
+ self.rotary_ndims = None
699
+ else:
700
+ assert config.rotary_pct < 1
701
+ self.rotary_ndims = int(
702
+ config.kv_channels * config.rotary_pct
703
+ )
704
+ dim = (
705
+ self.rotary_ndims
706
+ if self.rotary_ndims is not None
707
+ else config.kv_channels
708
+ )
709
+ self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
710
+
711
+ self.use_flash_attn = config.use_flash_attn
712
+ self.is_fp32 = not (config.bf16 or config.fp16)
713
+
714
+ self.h = nn.ModuleList(
715
+ [
716
+ QWenBlock(
717
+ config
718
+ )
719
+ for i in range(config.num_hidden_layers)
720
+ ]
721
+ )
722
+ self.ln_f = RMSNorm(
723
+ self.embed_dim,
724
+ eps=config.layer_norm_epsilon,
725
+ )
726
+
727
+ self.post_init()
728
+
729
+ def get_input_embeddings(self):
730
+ return self.wte
731
+
732
+ def set_input_embeddings(self, new_embeddings):
733
+ self.wte = new_embeddings
734
+
735
+ def get_ntk_alpha(self, true_seq_len):
736
+ context_value = math.log(true_seq_len / self.seq_length, 2) + 1
737
+ ntk_alpha = 2 ** math.ceil(context_value) - 1
738
+ ntk_alpha = max(ntk_alpha, 1)
739
+ return ntk_alpha
740
+
741
+ def forward(
742
+ self,
743
+ input_ids: Optional[torch.LongTensor] = None,
744
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
745
+ attention_mask: Optional[torch.FloatTensor] = None,
746
+ token_type_ids: Optional[torch.LongTensor] = None,
747
+ position_ids: Optional[torch.LongTensor] = None,
748
+ head_mask: Optional[torch.FloatTensor] = None,
749
+ inputs_embeds: Optional[torch.FloatTensor] = None,
750
+ encoder_hidden_states: Optional[torch.Tensor] = None,
751
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
752
+ use_cache: Optional[bool] = None,
753
+ output_attentions: Optional[bool] = None,
754
+ output_hidden_states: Optional[bool] = None,
755
+ return_dict: Optional[bool] = None,
756
+ ):
757
+ output_attentions = (
758
+ output_attentions
759
+ if output_attentions is not None
760
+ else self.config.output_attentions
761
+ )
762
+ output_hidden_states = (
763
+ output_hidden_states
764
+ if output_hidden_states is not None
765
+ else self.config.output_hidden_states
766
+ )
767
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
768
+ return_dict = (
769
+ return_dict if return_dict is not None else self.config.use_return_dict
770
+ )
771
+
772
+ if input_ids is not None and inputs_embeds is not None:
773
+ raise ValueError(
774
+ "You cannot specify both input_ids and inputs_embeds at the same time"
775
+ )
776
+ elif input_ids is not None:
777
+ input_shape = input_ids.size()
778
+ input_ids = input_ids.view(-1, input_shape[-1])
779
+ batch_size = input_ids.shape[0]
780
+ elif inputs_embeds is not None:
781
+ input_shape = inputs_embeds.size()[:-1]
782
+ batch_size = inputs_embeds.shape[0]
783
+ else:
784
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
785
+
786
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
787
+
788
+ if token_type_ids is not None:
789
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
790
+ if position_ids is not None:
791
+ position_ids = position_ids.view(-1, input_shape[-1])
792
+
793
+ if past_key_values is None:
794
+ past_length = 0
795
+ past_key_values = tuple([None] * len(self.h))
796
+ else:
797
+ if self.use_cache_quantization:
798
+ past_length = past_key_values[0][0][0].size(2)
799
+ else:
800
+ past_length = past_key_values[0][0].size(-2)
801
+ if position_ids is None:
802
+ position_ids = torch.arange(
803
+ past_length,
804
+ input_shape[-1] + past_length,
805
+ dtype=torch.long,
806
+ device=device,
807
+ )
808
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
809
+
810
+ if attention_mask is not None:
811
+ if batch_size <= 0:
812
+ raise ValueError("batch_size has to be defined and > 0")
813
+ attention_mask = attention_mask.view(batch_size, -1)
814
+ attention_mask = attention_mask[:, None, None, :]
815
+ attention_mask = attention_mask.to(dtype=self.dtype)
816
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
817
+
818
+ encoder_attention_mask = None
819
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
820
+
821
+ if inputs_embeds is None:
822
+ inputs_embeds = self.wte(input_ids)
823
+ hidden_states = inputs_embeds
824
+
825
+ kv_seq_len = hidden_states.size()[1]
826
+ if past_key_values[0] is not None:
827
+ # past key values[0][0] shape: bs * seq_len * head_num * dim
828
+ if self.use_cache_quantization:
829
+ kv_seq_len += past_key_values[0][0][0].shape[2]
830
+ else:
831
+ kv_seq_len += past_key_values[0][0].shape[1]
832
+
833
+ if self.training or not self.use_dynamic_ntk:
834
+ ntk_alpha_list = [1.0]
835
+ elif kv_seq_len != hidden_states.size()[1]:
836
+ ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
837
+ else:
838
+ ntk_alpha_list = []
839
+ if attention_mask is not None and kv_seq_len > self.seq_length:
840
+ true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1, dtype=torch.int32)
841
+ for i in range(hidden_states.size()[0]):
842
+ true_seq_len = true_seq_lens[i].item()
843
+ ntk_alpha = self.get_ntk_alpha(true_seq_len)
844
+ ntk_alpha_list.append(ntk_alpha)
845
+ else:
846
+ ntk_alpha = self.get_ntk_alpha(kv_seq_len)
847
+ ntk_alpha_list.append(ntk_alpha)
848
+ self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
849
+ rotary_pos_emb_list = [
850
+ self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) for ntk_alpha in ntk_alpha_list
851
+ ]
852
+
853
+ hidden_states = self.drop(hidden_states)
854
+ output_shape = input_shape + (hidden_states.size(-1),)
855
+
856
+ if self.gradient_checkpointing and self.training:
857
+ if use_cache:
858
+ logger.warning_once(
859
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
860
+ )
861
+ use_cache = False
862
+
863
+ presents = () if use_cache else None
864
+ all_self_attentions = () if output_attentions else None
865
+ all_hidden_states = () if output_hidden_states else None
866
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
867
+
868
+ if output_hidden_states:
869
+ all_hidden_states = all_hidden_states + (hidden_states,)
870
+
871
+ if self.gradient_checkpointing and self.training:
872
+
873
+ def create_custom_forward(module):
874
+ def custom_forward(*inputs):
875
+ # None for past_key_value
876
+ return module(*inputs, use_cache, output_attentions)
877
+
878
+ return custom_forward
879
+
880
+ outputs = torch.utils.checkpoint.checkpoint(
881
+ create_custom_forward(block),
882
+ hidden_states,
883
+ rotary_pos_emb_list,
884
+ None,
885
+ attention_mask,
886
+ head_mask[i],
887
+ encoder_hidden_states,
888
+ encoder_attention_mask,
889
+ )
890
+ else:
891
+ outputs = block(
892
+ hidden_states,
893
+ layer_past=layer_past,
894
+ rotary_pos_emb_list=rotary_pos_emb_list,
895
+ attention_mask=attention_mask,
896
+ head_mask=head_mask[i],
897
+ encoder_hidden_states=encoder_hidden_states,
898
+ encoder_attention_mask=encoder_attention_mask,
899
+ use_cache=use_cache,
900
+ output_attentions=output_attentions,
901
+ )
902
+
903
+ hidden_states = outputs[0]
904
+ if use_cache is True:
905
+ presents = presents + (outputs[1],)
906
+
907
+ if output_attentions:
908
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
909
+
910
+ hidden_states = self.ln_f(hidden_states)
911
+ hidden_states = hidden_states.view(output_shape)
912
+ # Add last hidden state
913
+ if output_hidden_states:
914
+ all_hidden_states = all_hidden_states + (hidden_states,)
915
+
916
+ if not return_dict:
917
+ return tuple(
918
+ v for v in [hidden_states, presents, all_hidden_states] if v is not None
919
+ )
920
+
921
+ return BaseModelOutputWithPast(
922
+ last_hidden_state=hidden_states,
923
+ past_key_values=presents,
924
+ hidden_states=all_hidden_states,
925
+ attentions=all_self_attentions,
926
+ )
927
+
928
+
929
+ class QWenLMHeadModel(QWenPreTrainedModel):
930
+ _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
931
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
932
+
933
+ def __init__(self, config):
934
+ super().__init__(config)
935
+ assert (
936
+ config.bf16 + config.fp16 + config.fp32 <= 1
937
+ ), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
938
+
939
+ autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
940
+
941
+ if autoset_precision:
942
+ if SUPPORT_BF16:
943
+ logger.warn(
944
+ "The model is automatically converting to bf16 for faster inference. "
945
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
946
+ )
947
+ config.bf16 = True
948
+ elif SUPPORT_FP16:
949
+ logger.warn(
950
+ "The model is automatically converting to fp16 for faster inference. "
951
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
952
+ )
953
+ config.fp16 = True
954
+ else:
955
+ config.fp32 = True
956
+
957
+ if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
958
+ logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
959
+ if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
960
+ logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
961
+ if config.fp32:
962
+ if SUPPORT_BF16:
963
+ logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
964
+ elif SUPPORT_FP16:
965
+ logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
966
+
967
+ if config.use_flash_attn == "auto":
968
+ if config.bf16 or config.fp16:
969
+ logger.warn("Try importing flash-attention for faster inference...")
970
+ config.use_flash_attn = True
971
+ else:
972
+ config.use_flash_attn = False
973
+ if config.use_flash_attn and config.fp32:
974
+ logger.warn("Flash attention will be disabled because it does NOT support fp32.")
975
+
976
+ if config.use_flash_attn:
977
+ _import_flash_attn()
978
+
979
+ self.transformer = QWenModel(config)
980
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
981
+
982
+ if config.bf16:
983
+ self.transformer.bfloat16()
984
+ self.lm_head.bfloat16()
985
+ if config.fp16:
986
+ self.transformer.half()
987
+ self.lm_head.half()
988
+ self.post_init()
989
+
990
+ def get_output_embeddings(self):
991
+ return self.lm_head
992
+
993
+ def set_output_embeddings(self, new_embeddings):
994
+ self.lm_head = new_embeddings
995
+
996
+ def prepare_inputs_for_generation(
997
+ self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
998
+ ):
999
+ if past_key_values:
1000
+ input_ids = input_ids[:, -1].unsqueeze(-1)
1001
+
1002
+ if input_ids.size(0) == 1:
1003
+ attention_mask = None
1004
+ else:
1005
+ attention_mask = kwargs.get("attention_mask", None)
1006
+
1007
+ if inputs_embeds is not None and past_key_values is None:
1008
+ model_inputs = {"inputs_embeds": inputs_embeds}
1009
+ else:
1010
+ model_inputs = {"input_ids": input_ids}
1011
+
1012
+ model_inputs.update(
1013
+ {
1014
+ "past_key_values": past_key_values,
1015
+ "use_cache": kwargs.get("use_cache"),
1016
+ "attention_mask": attention_mask,
1017
+ }
1018
+ )
1019
+ return model_inputs
1020
+
1021
+ def forward(
1022
+ self,
1023
+ input_ids: Optional[torch.LongTensor] = None,
1024
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1025
+ attention_mask: Optional[torch.FloatTensor] = None,
1026
+ token_type_ids: Optional[torch.LongTensor] = None,
1027
+ position_ids: Optional[torch.LongTensor] = None,
1028
+ head_mask: Optional[torch.FloatTensor] = None,
1029
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1030
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1031
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1032
+ labels: Optional[torch.LongTensor] = None,
1033
+ use_cache: Optional[bool] = None,
1034
+ output_attentions: Optional[bool] = None,
1035
+ output_hidden_states: Optional[bool] = None,
1036
+ return_dict: Optional[bool] = None,
1037
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1038
+
1039
+ return_dict = (
1040
+ return_dict if return_dict is not None else self.config.use_return_dict
1041
+ )
1042
+
1043
+ transformer_outputs = self.transformer(
1044
+ input_ids,
1045
+ past_key_values=past_key_values,
1046
+ attention_mask=attention_mask,
1047
+ token_type_ids=token_type_ids,
1048
+ position_ids=position_ids,
1049
+ head_mask=head_mask,
1050
+ inputs_embeds=inputs_embeds,
1051
+ encoder_hidden_states=encoder_hidden_states,
1052
+ encoder_attention_mask=encoder_attention_mask,
1053
+ use_cache=use_cache,
1054
+ output_attentions=output_attentions,
1055
+ output_hidden_states=output_hidden_states,
1056
+ return_dict=return_dict,
1057
+ )
1058
+ hidden_states = transformer_outputs[0]
1059
+
1060
+ lm_logits = self.lm_head(hidden_states)
1061
+
1062
+ loss = None
1063
+ if labels is not None:
1064
+ labels = labels.to(lm_logits.device)
1065
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1066
+ shift_labels = labels[..., 1:].contiguous()
1067
+ loss_fct = CrossEntropyLoss()
1068
+ loss = loss_fct(
1069
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
1070
+ )
1071
+
1072
+ if not return_dict:
1073
+ output = (lm_logits,) + transformer_outputs[1:]
1074
+ return ((loss,) + output) if loss is not None else output
1075
+
1076
+ return CausalLMOutputWithPast(
1077
+ loss=loss,
1078
+ logits=lm_logits,
1079
+ past_key_values=transformer_outputs.past_key_values,
1080
+ hidden_states=transformer_outputs.hidden_states,
1081
+ attentions=transformer_outputs.attentions,
1082
+ )
1083
+
1084
+ @staticmethod
1085
+ def _reorder_cache(
1086
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1087
+ ) -> Tuple[Tuple[torch.Tensor]]:
1088
+
1089
+ return tuple(
1090
+ tuple(
1091
+ past_state.index_select(0, beam_idx.to(past_state.device))
1092
+ for past_state in layer_past
1093
+ )
1094
+ for layer_past in past_key_values
1095
+ )
1096
+
1097
+ def chat(
1098
+ self,
1099
+ tokenizer: PreTrainedTokenizer,
1100
+ query: str,
1101
+ history: Optional[HistoryType],
1102
+ system: str = "You are a helpful assistant.",
1103
+ stream: Optional[bool] = _SENTINEL,
1104
+ stop_words_ids: Optional[List[List[int]]] = None,
1105
+ generation_config: Optional[GenerationConfig] = None,
1106
+ **kwargs,
1107
+ ) -> Tuple[str, HistoryType]:
1108
+ generation_config = generation_config if generation_config is not None else self.generation_config
1109
+
1110
+ assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
1111
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1112
+ if history is None:
1113
+ history = []
1114
+ else:
1115
+ # make a copy of the user's input such that is is left untouched
1116
+ history = copy.deepcopy(history)
1117
+
1118
+ if stop_words_ids is None:
1119
+ stop_words_ids = []
1120
+
1121
+ max_window_size = kwargs.get('max_window_size', None)
1122
+ if max_window_size is None:
1123
+ max_window_size = generation_config.max_window_size
1124
+ raw_text, context_tokens = make_context(
1125
+ tokenizer,
1126
+ query,
1127
+ history=history,
1128
+ system=system,
1129
+ max_window_size=max_window_size,
1130
+ chat_format=generation_config.chat_format,
1131
+ )
1132
+
1133
+ stop_words_ids.extend(get_stop_words_ids(
1134
+ generation_config.chat_format, tokenizer
1135
+ ))
1136
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1137
+ outputs = self.generate(
1138
+ input_ids,
1139
+ stop_words_ids=stop_words_ids,
1140
+ return_dict_in_generate=False,
1141
+ generation_config=generation_config,
1142
+ **kwargs,
1143
+ )
1144
+
1145
+ response = decode_tokens(
1146
+ outputs[0],
1147
+ tokenizer,
1148
+ raw_text_len=len(raw_text),
1149
+ context_length=len(context_tokens),
1150
+ chat_format=generation_config.chat_format,
1151
+ verbose=False,
1152
+ errors='replace'
1153
+ )
1154
+
1155
+ # as history is a copy of the user inputs,
1156
+ # we can always return the new turn to the user.
1157
+ # separating input history and output history also enables the user
1158
+ # to implement more complex history management
1159
+ history.append((query, response))
1160
+
1161
+ return response, history
1162
+
1163
+ def chat_stream(
1164
+ self,
1165
+ tokenizer: PreTrainedTokenizer,
1166
+ query: str,
1167
+ history: Optional[HistoryType],
1168
+ system: str = "You are a helpful assistant.",
1169
+ stop_words_ids: Optional[List[List[int]]] = None,
1170
+ logits_processor: Optional[LogitsProcessorList] = None,
1171
+ generation_config: Optional[GenerationConfig] = None,
1172
+ **kwargs,
1173
+ ) -> Generator[str, Any, None]:
1174
+ generation_config = generation_config if generation_config is not None else self.generation_config
1175
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1176
+ if history is None:
1177
+ history = []
1178
+ if stop_words_ids is None:
1179
+ stop_words_ids = []
1180
+
1181
+ max_window_size = kwargs.get('max_window_size', None)
1182
+ if max_window_size is None:
1183
+ max_window_size = generation_config.max_window_size
1184
+ raw_text, context_tokens = make_context(
1185
+ tokenizer,
1186
+ query,
1187
+ history=history,
1188
+ system=system,
1189
+ max_window_size=max_window_size,
1190
+ chat_format=generation_config.chat_format,
1191
+ )
1192
+
1193
+ stop_words_ids.extend(get_stop_words_ids(
1194
+ generation_config.chat_format, tokenizer
1195
+ ))
1196
+ if stop_words_ids is not None:
1197
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1198
+ stop_words_ids=stop_words_ids,
1199
+ eos_token_id=generation_config.eos_token_id,
1200
+ )
1201
+ if logits_processor is None:
1202
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1203
+ else:
1204
+ logits_processor.append(stop_words_logits_processor)
1205
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1206
+
1207
+ from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
1208
+ self.__class__.generate_stream = NewGenerationMixin.generate
1209
+ self.__class__.sample_stream = NewGenerationMixin.sample_stream
1210
+ stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
1211
+
1212
+ def stream_generator():
1213
+ outputs = []
1214
+ for token in self.generate_stream(
1215
+ input_ids,
1216
+ return_dict_in_generate=False,
1217
+ generation_config=stream_config,
1218
+ logits_processor=logits_processor,
1219
+ seed=-1,
1220
+ **kwargs):
1221
+ outputs.append(token.item())
1222
+ yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore')
1223
+
1224
+ return stream_generator()
1225
+
1226
+ def generate(
1227
+ self,
1228
+ inputs: Optional[torch.Tensor] = None,
1229
+ generation_config: Optional[GenerationConfig] = None,
1230
+ logits_processor: Optional[LogitsProcessorList] = None,
1231
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1232
+ prefix_allowed_tokens_fn: Optional[
1233
+ Callable[[int, torch.Tensor], List[int]]
1234
+ ] = None,
1235
+ synced_gpus: Optional[bool] = None,
1236
+ assistant_model: Optional["PreTrainedModel"] = None,
1237
+ streamer: Optional["BaseStreamer"] = None,
1238
+ **kwargs,
1239
+ ) -> Union[GenerateOutput, torch.LongTensor]:
1240
+ generation_config = generation_config if generation_config is not None else self.generation_config
1241
+
1242
+ # Process stop_words_ids.
1243
+ stop_words_ids = kwargs.pop("stop_words_ids", None)
1244
+ if stop_words_ids is None and generation_config is not None:
1245
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1246
+ if stop_words_ids is None:
1247
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1248
+
1249
+ if stop_words_ids is not None:
1250
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1251
+ stop_words_ids=stop_words_ids,
1252
+ eos_token_id=generation_config.eos_token_id,
1253
+ )
1254
+ if logits_processor is None:
1255
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1256
+ else:
1257
+ logits_processor.append(stop_words_logits_processor)
1258
+
1259
+ return super().generate(
1260
+ inputs,
1261
+ generation_config=generation_config,
1262
+ logits_processor=logits_processor,
1263
+ stopping_criteria=stopping_criteria,
1264
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1265
+ synced_gpus=synced_gpus,
1266
+ assistant_model=assistant_model,
1267
+ streamer=streamer,
1268
+ **kwargs,
1269
+ )
1270
+
1271
+
1272
+ class RotaryEmbedding(torch.nn.Module):
1273
+ def __init__(self, dim, base=10000):
1274
+ super().__init__()
1275
+ self.dim = dim
1276
+ self.base = base
1277
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
1278
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
1279
+ if importlib.util.find_spec("einops") is None:
1280
+ raise RuntimeError("einops is required for Rotary Embedding")
1281
+
1282
+ self._rotary_pos_emb_cache = None
1283
+ self._seq_len_cached = 0
1284
+ self._ntk_alpha_cached = 1.0
1285
+ self._ntk_alpha_cached_list = [1.0]
1286
+
1287
+ def update_rotary_pos_emb_cache(self, seqlen, ntk_alpha=1.0):
1288
+ if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1289
+ base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1290
+ self.inv_freq = 1.0 / (
1291
+ base
1292
+ ** (
1293
+ torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
1294
+ / self.dim
1295
+ )
1296
+ )
1297
+ self._seq_len_cached = max(2 * seqlen, 16)
1298
+ self._ntk_alpha_cached = ntk_alpha
1299
+ seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1300
+ freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
1301
+
1302
+ emb = torch.cat((freqs, freqs), dim=-1)
1303
+ from einops import rearrange
1304
+
1305
+ emb = rearrange(emb, "n d -> 1 n 1 d")
1306
+
1307
+ cos, sin = emb.cos(), emb.sin()
1308
+ self._rotary_pos_emb_cache = [cos, sin]
1309
+
1310
+ def forward(self, max_seq_len, ntk_alpha=1.0):
1311
+ self.update_rotary_pos_emb_cache(max_seq_len, ntk_alpha)
1312
+ cos, sin = self._rotary_pos_emb_cache
1313
+ return [cos[:, :max_seq_len], sin[:, :max_seq_len]]
1314
+
1315
+
1316
+ def _rotate_half(x):
1317
+ from einops import rearrange
1318
+
1319
+ x = rearrange(x, "... (j d) -> ... j d", j=2)
1320
+ x1, x2 = x.unbind(dim=-2)
1321
+ return torch.cat((-x2, x1), dim=-1)
1322
+
1323
+
1324
+ def apply_rotary_pos_emb(t, freqs):
1325
+ """ Apply rotary embedding to the first rotary_dim of the iput
1326
+
1327
+ Arguments:
1328
+ t (tensor(batch_size, seq_len, n_head, head_dim)):
1329
+ the input embedding/hidden states
1330
+ freqs (list[tensor(1, seq_len, 1, rotary_dim), tensor(1, seq_len, 1, rotary_dim)]):
1331
+ the cached cos/sin position embeddings
1332
+ """
1333
+ rot_dim = freqs[0].shape[-1]
1334
+ cos, sin = freqs
1335
+ t_float = t.float()
1336
+ if apply_rotary_emb_func is not None and t.is_cuda:
1337
+ # apply_rotary_emb in flash_attn requires cos/sin to be of
1338
+ # shape (seqlen, rotary_dim / 2) and apply rotary embedding
1339
+ # to the first rotary_dim of the input
1340
+ cos = cos.squeeze(0).squeeze(1)[:, : rot_dim // 2]
1341
+ sin = sin.squeeze(0).squeeze(1)[:, : rot_dim // 2]
1342
+ return apply_rotary_emb_func(t_float, cos, sin).type_as(t)
1343
+ else:
1344
+ t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
1345
+ t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin)
1346
+ return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
1347
+
1348
+
1349
+ class RMSNorm(torch.nn.Module):
1350
+ def __init__(self, dim: int, eps: float = 1e-6):
1351
+ super().__init__()
1352
+ self.eps = eps
1353
+ self.weight = nn.Parameter(torch.ones(dim))
1354
+
1355
+ def _norm(self, x):
1356
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
1357
+
1358
+ def forward(self, x):
1359
+ if rms_norm is not None and x.is_cuda:
1360
+ return rms_norm(x, self.weight, self.eps)
1361
+ else:
1362
+ output = self._norm(x.float()).type_as(x)
1363
+ return output * self.weight
pytorch_model-00001-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01a40fa9900a14f78ac167c3cb390ce9e22c1065c1a2a06bfec064c108f93820
3
+ size 9963536445
pytorch_model-00002-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e42190369a51213541a5962c8d89076b8bda9fd044d7f5f7c30b18dd7660b4b8
3
+ size 9878405831
pytorch_model-00003-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15e02feaa91f1f598972ca86dbbac020091d71be145a66dc71c3dd4b2b003faf
3
+ size 8492747709
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1d9456a1980609eff5aad43f07996680bcd83519fc67ea8af70dcbe2d0bc6c0
3
+ size 24387
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
qwen_generation_utils.py ADDED
@@ -0,0 +1,416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Generation support."""
7
+
8
+ from typing import Tuple, List, Union, Iterable
9
+
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from transformers import PreTrainedTokenizer
14
+ from transformers import logging
15
+ from transformers.generation import LogitsProcessor
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+ # Types.
20
+ HistoryType = List[Tuple[str, str]]
21
+ TokensType = List[int]
22
+ BatchTokensType = List[List[int]]
23
+
24
+
25
+ def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
26
+ for tokens in batch:
27
+ context_length = len(tokens)
28
+ if context_length < seq_length:
29
+ tokens.extend([pad_id] * (seq_length - context_length))
30
+ return batch
31
+
32
+
33
+ def get_ltor_masks_and_position_ids(
34
+ data,
35
+ eod_token,
36
+ reset_position_ids,
37
+ reset_attention_mask,
38
+ eod_mask_loss,
39
+ ):
40
+ """Build masks and position id for left to right model."""
41
+
42
+ # Extract batch size and sequence length.
43
+ micro_batch_size, seq_length = data.size()
44
+
45
+ # Attention mask (lower triangular).
46
+ if reset_attention_mask:
47
+ att_mask_batch = micro_batch_size
48
+ else:
49
+ att_mask_batch = 1
50
+ attention_mask = torch.tril(
51
+ torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
52
+ ).view(att_mask_batch, 1, seq_length, seq_length)
53
+
54
+ # Loss mask.
55
+ loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
56
+ if eod_mask_loss:
57
+ loss_mask[data == eod_token] = 0.0
58
+
59
+ # Position ids.
60
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
61
+ position_ids = position_ids.unsqueeze(0).expand_as(data)
62
+ # We need to clone as the ids will be modifed based on batch index.
63
+ if reset_position_ids:
64
+ position_ids = position_ids.clone()
65
+
66
+ if reset_position_ids or reset_attention_mask:
67
+ # Loop through the batches:
68
+ for b in range(micro_batch_size):
69
+
70
+ # Find indecies where EOD token is.
71
+ eod_index = position_ids[b, data[b] == eod_token]
72
+ # Detach indecies from positions if going to modify positions.
73
+ if reset_position_ids:
74
+ eod_index = eod_index.clone()
75
+
76
+ # Loop through EOD indecies:
77
+ prev_index = 0
78
+ for j in range(eod_index.size()[0]):
79
+ i = eod_index[j]
80
+ # Mask attention loss.
81
+ if reset_attention_mask:
82
+ attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
83
+ # Reset positions.
84
+ if reset_position_ids:
85
+ position_ids[b, (i + 1) :] -= i + 1 - prev_index
86
+ prev_index = i + 1
87
+
88
+ # Convert attention mask to binary:
89
+ attention_mask = attention_mask < 0.5
90
+
91
+ return attention_mask, loss_mask, position_ids
92
+
93
+
94
+ def get_batch(context_tokens: torch.LongTensor, eod_id: int):
95
+ """Generate batch from context tokens."""
96
+ # Move to GPU.
97
+ tokens = context_tokens.contiguous().to(context_tokens.device)
98
+ # Get the attention mask and postition ids.
99
+ attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
100
+ tokens,
101
+ eod_id,
102
+ reset_position_ids=False,
103
+ reset_attention_mask=False,
104
+ eod_mask_loss=False,
105
+ )
106
+ return tokens, attention_mask, position_ids
107
+
108
+
109
+ def get_stop_words_ids(chat_format, tokenizer):
110
+ if chat_format == "raw":
111
+ stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
112
+ elif chat_format == "chatml":
113
+ stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
114
+ else:
115
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
116
+ return stop_words_ids
117
+
118
+
119
+ def make_context(
120
+ tokenizer: PreTrainedTokenizer,
121
+ query: str,
122
+ history: List[Tuple[str, str]] = None,
123
+ system: str = "",
124
+ max_window_size: int = 6144,
125
+ chat_format: str = "chatml",
126
+ ):
127
+ if history is None:
128
+ history = []
129
+
130
+ if chat_format == "chatml":
131
+ im_start, im_end = "<|im_start|>", "<|im_end|>"
132
+ im_start_tokens = [tokenizer.im_start_id]
133
+ im_end_tokens = [tokenizer.im_end_id]
134
+ nl_tokens = tokenizer.encode("\n")
135
+
136
+ def _tokenize_str(role, content):
137
+ return f"{role}\n{content}", tokenizer.encode(
138
+ role, allowed_special=set()
139
+ ) + nl_tokens + tokenizer.encode(content, allowed_special=set())
140
+
141
+ system_text, system_tokens_part = _tokenize_str("system", system)
142
+ system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
143
+
144
+ raw_text = ""
145
+ context_tokens = []
146
+
147
+ for turn_query, turn_response in reversed(history):
148
+ query_text, query_tokens_part = _tokenize_str("user", turn_query)
149
+ query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
150
+ response_text, response_tokens_part = _tokenize_str(
151
+ "assistant", turn_response
152
+ )
153
+ response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
154
+
155
+ next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
156
+ prev_chat = (
157
+ f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
158
+ )
159
+
160
+ current_context_size = (
161
+ len(system_tokens) + len(next_context_tokens) + len(context_tokens)
162
+ )
163
+ if current_context_size < max_window_size:
164
+ context_tokens = next_context_tokens + context_tokens
165
+ raw_text = prev_chat + raw_text
166
+ else:
167
+ break
168
+
169
+ context_tokens = system_tokens + context_tokens
170
+ raw_text = f"{im_start}{system_text}{im_end}" + raw_text
171
+ context_tokens += (
172
+ nl_tokens
173
+ + im_start_tokens
174
+ + _tokenize_str("user", query)[1]
175
+ + im_end_tokens
176
+ + nl_tokens
177
+ + im_start_tokens
178
+ + tokenizer.encode("assistant")
179
+ + nl_tokens
180
+ )
181
+ raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
182
+
183
+ elif chat_format == "raw":
184
+ raw_text = query
185
+ context_tokens = tokenizer.encode(raw_text)
186
+ else:
187
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
188
+
189
+ return raw_text, context_tokens
190
+
191
+
192
+ def _decode_default(
193
+ tokens: List[int],
194
+ *,
195
+ stop_words: List[str],
196
+ eod_words: List[str],
197
+ tokenizer: PreTrainedTokenizer,
198
+ raw_text_len: int,
199
+ verbose: bool = False,
200
+ return_end_reason: bool = False,
201
+ errors: str='replace',
202
+ ):
203
+ trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
204
+ if verbose:
205
+ print("\nRaw Generate: ", trim_decode_tokens)
206
+
207
+ end_reason = f"Gen length {len(tokens)}"
208
+ for stop_word in stop_words:
209
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
210
+ for eod_word in eod_words:
211
+ if eod_word in trim_decode_tokens:
212
+ end_reason = f"Gen {eod_word!r}"
213
+ trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
214
+ trim_decode_tokens = trim_decode_tokens.strip()
215
+ if verbose:
216
+ print("\nEnd Reason:", end_reason)
217
+ print("\nGenerate: ", trim_decode_tokens)
218
+
219
+ if return_end_reason:
220
+ return trim_decode_tokens, end_reason
221
+ else:
222
+ return trim_decode_tokens
223
+
224
+
225
+ def _decode_chatml(
226
+ tokens: List[int],
227
+ *,
228
+ stop_words: List[str],
229
+ eod_token_ids: List[int],
230
+ tokenizer: PreTrainedTokenizer,
231
+ raw_text_len: int,
232
+ context_length: int,
233
+ verbose: bool = False,
234
+ return_end_reason: bool = False,
235
+ errors: str='replace'
236
+ ):
237
+ end_reason = f"Gen length {len(tokens)}"
238
+ eod_token_idx = context_length
239
+ for eod_token_idx in range(context_length, len(tokens)):
240
+ if tokens[eod_token_idx] in eod_token_ids:
241
+ end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
242
+ break
243
+
244
+ trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
245
+ if verbose:
246
+ print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
247
+ print("\nRaw Generate:", trim_decode_tokens)
248
+ print("\nEnd Reason:", end_reason)
249
+ for stop_word in stop_words:
250
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
251
+ trim_decode_tokens = trim_decode_tokens.strip()
252
+ if verbose:
253
+ print("\nGenerate:", trim_decode_tokens)
254
+
255
+ if return_end_reason:
256
+ return trim_decode_tokens, end_reason
257
+ else:
258
+ return trim_decode_tokens
259
+
260
+
261
+ def decode_tokens(
262
+ tokens: Union[torch.LongTensor, TokensType],
263
+ tokenizer: PreTrainedTokenizer,
264
+ raw_text_len: int,
265
+ context_length: int,
266
+ chat_format: str,
267
+ verbose: bool = False,
268
+ return_end_reason: bool = False,
269
+ errors: str="replace",
270
+ ) -> str:
271
+ if torch.is_tensor(tokens):
272
+ tokens = tokens.cpu().numpy().tolist()
273
+
274
+ if chat_format == "chatml":
275
+ return _decode_chatml(
276
+ tokens,
277
+ stop_words=[],
278
+ eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
279
+ tokenizer=tokenizer,
280
+ raw_text_len=raw_text_len,
281
+ context_length=context_length,
282
+ verbose=verbose,
283
+ return_end_reason=return_end_reason,
284
+ errors=errors,
285
+ )
286
+ elif chat_format == "raw":
287
+ return _decode_default(
288
+ tokens,
289
+ stop_words=["<|endoftext|>"],
290
+ eod_words=["<|endoftext|>"],
291
+ tokenizer=tokenizer,
292
+ raw_text_len=raw_text_len,
293
+ verbose=verbose,
294
+ return_end_reason=return_end_reason,
295
+ errors=errors,
296
+ )
297
+ else:
298
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
299
+
300
+
301
+ class StopWordsLogitsProcessor(LogitsProcessor):
302
+ """
303
+ :class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
304
+
305
+ Args:
306
+ stop_words_ids (:obj:`List[List[int]]`):
307
+ List of list of token ids of stop ids. In order to get the tokens of the words
308
+ that should not appear in the generated text, use :obj:`tokenizer(bad_word,
309
+ add_prefix_space=True).input_ids`.
310
+ eos_token_id (:obj:`int`):
311
+ The id of the `end-of-sequence` token.
312
+ """
313
+
314
+ def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
315
+
316
+ if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
317
+ raise ValueError(
318
+ f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
319
+ )
320
+ if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
321
+ raise ValueError(
322
+ f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
323
+ )
324
+ if any(
325
+ any(
326
+ (not isinstance(token_id, (int, np.integer)) or token_id < 0)
327
+ for token_id in stop_word_ids
328
+ )
329
+ for stop_word_ids in stop_words_ids
330
+ ):
331
+ raise ValueError(
332
+ f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
333
+ )
334
+
335
+ self.stop_words_ids = list(
336
+ filter(
337
+ lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
338
+ )
339
+ )
340
+ self.eos_token_id = eos_token_id
341
+ for stop_token_seq in self.stop_words_ids:
342
+ assert (
343
+ len(stop_token_seq) > 0
344
+ ), "Stop words token sequences {} cannot have an empty list".format(
345
+ stop_words_ids
346
+ )
347
+
348
+ def __call__(
349
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor
350
+ ) -> torch.FloatTensor:
351
+ stopped_samples = self._calc_stopped_samples(input_ids)
352
+ for i, should_stop in enumerate(stopped_samples):
353
+ if should_stop:
354
+ scores[i, self.eos_token_id] = float(2**15)
355
+ return scores
356
+
357
+ def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
358
+ if len(tokens) == 0:
359
+ # if bad word tokens is just one token always ban it
360
+ return True
361
+ elif len(tokens) > len(prev_tokens):
362
+ # if bad word tokens are longer then prev input_ids they can't be equal
363
+ return False
364
+ elif prev_tokens[-len(tokens) :].tolist() == tokens:
365
+ # if tokens match
366
+ return True
367
+ else:
368
+ return False
369
+
370
+ def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
371
+ stopped_samples = []
372
+ for prev_input_ids_slice in prev_input_ids:
373
+ match = False
374
+ for stop_token_seq in self.stop_words_ids:
375
+ if self._tokens_match(prev_input_ids_slice, stop_token_seq):
376
+ # if tokens do not match continue
377
+ match = True
378
+ break
379
+ stopped_samples.append(match)
380
+
381
+ return stopped_samples
382
+
383
+
384
+ def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
385
+ """This function has been mostly taken from huggingface conversational
386
+ ai code at
387
+ https://medium.com/huggingface/how-to-build-a-state-of-the-art-
388
+ conversational-ai-with-transfer-learning-2d818ac26313"""
389
+
390
+ if top_k > 0:
391
+ # Remove all tokens with a probability less than the
392
+ # last token of the top-k
393
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
394
+ logits[indices_to_remove] = filter_value
395
+
396
+ if top_p > 0.0:
397
+ # Cconvert to 1D
398
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
399
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
400
+
401
+ # Remove tokens with cumulative probability above the threshold
402
+ sorted_indices_to_remove = cumulative_probs > top_p
403
+ # Shift the indices to the right to keep also the first token
404
+ # above the threshold
405
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
406
+ sorted_indices_to_remove[..., 0] = 0
407
+ for i in range(sorted_indices.size(0)):
408
+ indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
409
+ logits[i][indices_to_remove] = filter_value
410
+
411
+ return logits
412
+
413
+
414
+ def switch(val1, val2, boolean):
415
+ boolean = boolean.type_as(val1)
416
+ return (1 - boolean) * val1 + boolean * val2
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a118cdad874e46838801d9c7548cab04dc2a590c59d5cdd5d061e814500301ed
3
+ size 21687
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae9d159f9d8e01065d2faf211aa451a41fa03cf513d15d96ed19781625f0f17d
3
+ size 21687
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdaf5a1f643d3d172c1f22702aa6ef7a128eb925a89ff542ad832a7b5d119173
3
+ size 21687
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bd1bb67ec48f262adbb9ab9ca45e647cef2a853f78095fd748c47258c0fefe3
3
+ size 21687
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fff3be49764eac7f30ddf56707cca6516b91fe343c27fd8739f3ee2f6c096833
3
+ size 21687
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8659227dd6e0b64c6f71c64b0f35092a523f4f7660d545ca53b8281a1d230167
3
+ size 21687
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f36b5a916ec825a4e78aed91ab2b13b2c8e006ccc75cabb6e74078d41f89369
3
+ size 21687
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0d61140cb3373aa861cbf10ea5532af699368a670d67b8ce275c2ac09e848f7
3
+ size 21687
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6861e3b0fce5a75268f32bf99a058a54b7707a8d502ecab49bd6d6d5ab6c1b20
3
+ size 122
tokenization_qwen.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import unicodedata
12
+ from typing import Collection, Dict, List, Set, Tuple, Union
13
+
14
+ import tiktoken
15
+ from transformers import PreTrainedTokenizer, AddedToken
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
21
+
22
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
23
+ ENDOFTEXT = "<|endoftext|>"
24
+ IMSTART = "<|im_start|>"
25
+ IMEND = "<|im_end|>"
26
+ # as the default behavior is changed to allow special tokens in
27
+ # regular texts, the surface forms of special tokens need to be
28
+ # as different as possible to minimize the impact
29
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
30
+ # changed to use actual index to avoid misconfiguration with vocabulary expansion
31
+ SPECIAL_START_ID = 151643
32
+ SPECIAL_TOKENS = tuple(
33
+ enumerate(
34
+ (
35
+ (
36
+ ENDOFTEXT,
37
+ IMSTART,
38
+ IMEND,
39
+ )
40
+ + EXTRAS
41
+ ),
42
+ start=SPECIAL_START_ID,
43
+ )
44
+ )
45
+ SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
46
+
47
+
48
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
49
+ with open(tiktoken_bpe_file, "rb") as f:
50
+ contents = f.read()
51
+ return {
52
+ base64.b64decode(token): int(rank)
53
+ for token, rank in (line.split() for line in contents.splitlines() if line)
54
+ }
55
+
56
+
57
+ class QWenTokenizer(PreTrainedTokenizer):
58
+ """QWen tokenizer."""
59
+
60
+ vocab_files_names = VOCAB_FILES_NAMES
61
+
62
+ def __init__(
63
+ self,
64
+ vocab_file,
65
+ errors="replace",
66
+ extra_vocab_file=None,
67
+ **kwargs,
68
+ ):
69
+ super().__init__(**kwargs)
70
+
71
+ # how to handle errors in decoding UTF-8 byte sequences
72
+ # use ignore if you are in streaming inference
73
+ self.errors = errors
74
+
75
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
76
+ self.special_tokens = {
77
+ token: index
78
+ for index, token in SPECIAL_TOKENS
79
+ }
80
+
81
+ # try load extra vocab from file
82
+ if extra_vocab_file is not None:
83
+ used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
84
+ extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
85
+ for token, index in extra_mergeable_ranks.items():
86
+ if token in self.mergeable_ranks:
87
+ logger.info(f"extra token {token} exists, skipping")
88
+ continue
89
+ if index in used_ids:
90
+ logger.info(f'the index {index} for extra token {token} exists, skipping')
91
+ continue
92
+ self.mergeable_ranks[token] = index
93
+ # the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
94
+
95
+ enc = tiktoken.Encoding(
96
+ "Qwen",
97
+ pat_str=PAT_STR,
98
+ mergeable_ranks=self.mergeable_ranks,
99
+ special_tokens=self.special_tokens,
100
+ )
101
+ assert (
102
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
103
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
104
+
105
+ self.decoder = {
106
+ v: k for k, v in self.mergeable_ranks.items()
107
+ } # type: dict[int, bytes|str]
108
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
109
+
110
+ self.tokenizer = enc # type: tiktoken.Encoding
111
+
112
+ self.eod_id = self.tokenizer.eot_token
113
+ self.im_start_id = self.special_tokens[IMSTART]
114
+ self.im_end_id = self.special_tokens[IMEND]
115
+
116
+ def __getstate__(self):
117
+ # for pickle lovers
118
+ state = self.__dict__.copy()
119
+ del state["tokenizer"]
120
+ return state
121
+
122
+ def __setstate__(self, state):
123
+ # tokenizer is not python native; don't pass it; rebuild it
124
+ self.__dict__.update(state)
125
+ enc = tiktoken.Encoding(
126
+ "Qwen",
127
+ pat_str=PAT_STR,
128
+ mergeable_ranks=self.mergeable_ranks,
129
+ special_tokens=self.special_tokens,
130
+ )
131
+ self.tokenizer = enc
132
+
133
+ def __len__(self) -> int:
134
+ return self.tokenizer.n_vocab
135
+
136
+ def get_vocab(self) -> Dict[bytes, int]:
137
+ return self.mergeable_ranks
138
+
139
+ def convert_tokens_to_ids(
140
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
141
+ ) -> List[int]:
142
+ ids = []
143
+ if isinstance(tokens, (str, bytes)):
144
+ if tokens in self.special_tokens:
145
+ return self.special_tokens[tokens]
146
+ else:
147
+ return self.mergeable_ranks.get(tokens)
148
+ for token in tokens:
149
+ if token in self.special_tokens:
150
+ ids.append(self.special_tokens[token])
151
+ else:
152
+ ids.append(self.mergeable_ranks.get(token))
153
+ return ids
154
+
155
+ def _add_tokens(
156
+ self,
157
+ new_tokens: Union[List[str], List[AddedToken]],
158
+ special_tokens: bool = False,
159
+ ) -> int:
160
+ if not special_tokens and new_tokens:
161
+ raise ValueError("Adding regular tokens is not supported")
162
+ for token in new_tokens:
163
+ surface_form = token.content if isinstance(token, AddedToken) else token
164
+ if surface_form not in SPECIAL_TOKENS_SET:
165
+ raise ValueError("Adding unknown special tokens is not supported")
166
+ return 0
167
+
168
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
169
+ """
170
+ Save only the vocabulary of the tokenizer (vocabulary).
171
+
172
+ Returns:
173
+ `Tuple(str)`: Paths to the files saved.
174
+ """
175
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
176
+ with open(file_path, "w", encoding="utf8") as w:
177
+ for k, v in self.mergeable_ranks.items():
178
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
179
+ w.write(line)
180
+ return (file_path,)
181
+
182
+ def tokenize(
183
+ self,
184
+ text: str,
185
+ allowed_special: Union[Set, str] = "all",
186
+ disallowed_special: Union[Collection, str] = (),
187
+ **kwargs,
188
+ ) -> List[Union[bytes, str]]:
189
+ """
190
+ Converts a string in a sequence of tokens.
191
+
192
+ Args:
193
+ text (`str`):
194
+ The sequence to be encoded.
195
+ allowed_special (`Literal["all"]` or `set`):
196
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
197
+ Default to "all".
198
+ disallowed_special (`Literal["all"]` or `Collection`):
199
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
200
+ Default to an empty tuple.
201
+
202
+ kwargs (additional keyword arguments, *optional*):
203
+ Will be passed to the underlying model specific encode method.
204
+
205
+ Returns:
206
+ `List[bytes|str]`: The list of tokens.
207
+ """
208
+ tokens = []
209
+ text = unicodedata.normalize("NFC", text)
210
+
211
+ # this implementation takes a detour: text -> token id -> token surface forms
212
+ for t in self.tokenizer.encode(
213
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
214
+ ):
215
+ tokens.append(self.decoder[t])
216
+ return tokens
217
+
218
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
219
+ """
220
+ Converts a sequence of tokens in a single string.
221
+ """
222
+ text = ""
223
+ temp = b""
224
+ for t in tokens:
225
+ if isinstance(t, str):
226
+ if temp:
227
+ text += temp.decode("utf-8", errors=self.errors)
228
+ temp = b""
229
+ text += t
230
+ elif isinstance(t, bytes):
231
+ temp += t
232
+ else:
233
+ raise TypeError("token should only be of type types or str")
234
+ if temp:
235
+ text += temp.decode("utf-8", errors=self.errors)
236
+ return text
237
+
238
+ @property
239
+ def vocab_size(self):
240
+ return self.tokenizer.n_vocab
241
+
242
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
243
+ """Converts an id to a token, special tokens included"""
244
+ if index in self.decoder:
245
+ return self.decoder[index]
246
+ raise ValueError("unknown ids")
247
+
248
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
249
+ """Converts a token to an id using the vocab, special tokens included"""
250
+ if token in self.special_tokens:
251
+ return self.special_tokens[token]
252
+ if token in self.mergeable_ranks:
253
+ return self.mergeable_ranks[token]
254
+ raise ValueError("unknown token")
255
+
256
+ def _tokenize(self, text: str, **kwargs):
257
+ """
258
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
259
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
260
+
261
+ Do NOT take care of added tokens.
262
+ """
263
+ raise NotImplementedError
264
+
265
+ def _decode(
266
+ self,
267
+ token_ids: Union[int, List[int]],
268
+ skip_special_tokens: bool = False,
269
+ errors: str = None,
270
+ **kwargs,
271
+ ) -> str:
272
+ if isinstance(token_ids, int):
273
+ token_ids = [token_ids]
274
+ if skip_special_tokens:
275
+ token_ids = [i for i in token_ids if i < self.eod_id]
276
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
tokenizer_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c298bd9534ab31ff2ca2a5b654197713a9b5c82419e8a657f603ca03b288deb5
3
+ size 238
trainer_state.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d7e58f5865d884b641b6492b83b2c48c4f5acd292c17bb03bc1deb9b02d8838
3
+ size 438823
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd145c9a067b33b10bdc53e4de95408a8c04d828ee291773330d54532e6b1e50
3
+ size 6843
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)