--- library_name: transformers language: - ne license: mit base_model: kiranpantha/w2v-bert-2.0-nepali tags: - generated_from_trainer datasets: - kiranpantha/OpenSLR54-Balanced-Nepali metrics: - wer model-index: - name: Wave2Vec2-Bert2.0 - Kiran Pantha results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR54 type: kiranpantha/OpenSLR54-Balanced-Nepali config: default split: test args: 'config: ne, split: train,test' metrics: - name: Wer type: wer value: 0.43070906308450946 --- # Wave2Vec2-Bert2.0 - Kiran Pantha This model is a fine-tuned version of [kiranpantha/w2v-bert-2.0-nepali](https://huggingface.co/kiranpantha/w2v-bert-2.0-nepali) on the OpenSLR54 dataset. It achieves the following results on the evaluation set: - Loss: 0.4058 - Wer: 0.4307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7246 | 0.15 | 300 | 0.5189 | 0.5402 | | 0.6721 | 0.3 | 600 | 0.6084 | 0.5423 | | 0.6956 | 0.45 | 900 | 0.5712 | 0.5412 | | 0.6341 | 0.6 | 1200 | 0.4997 | 0.5105 | | 0.6119 | 0.75 | 1500 | 0.5008 | 0.5148 | | 0.564 | 0.9 | 1800 | 0.4627 | 0.4793 | | 0.5416 | 1.05 | 2100 | 0.4767 | 0.4734 | | 0.4569 | 1.2 | 2400 | 0.4754 | 0.4651 | | 0.4768 | 1.35 | 2700 | 0.4420 | 0.4702 | | 0.438 | 1.5 | 3000 | 0.4563 | 0.4614 | | 0.4337 | 1.65 | 3300 | 0.4290 | 0.4543 | | 0.447 | 1.8 | 3600 | 0.4081 | 0.4392 | | 0.4108 | 1.95 | 3900 | 0.4058 | 0.4307 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1