File size: 12,367 Bytes
278b6ef af99e83 278b6ef af99e83 278b6ef 1578b2b 278b6ef af99e83 9638d60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# coding=utf-8
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for HAT."""
import torch
from transformers import RobertaTokenizer, BertTokenizer
from .configuration_hat import HATConfig
from transformers.utils import logging
try:
from nltk import sent_tokenize
except:
raise Exception('NLTK is not installed! Install it with `pip install nltk`...')
logger = logging.get_logger(__name__)
class HATTokenizer:
def __init__(self, tokenizer=None):
self._tokenizer = tokenizer
self.config = HATConfig.from_pretrained(self._tokenizer.name_or_path)
self._tokenizer.model_max_length = self.model_max_length
self.type2id = {'input_ids': (self._tokenizer.cls_token_id, self._tokenizer.pad_token_id),
'token_type_ids': (0, 0),
'attention_mask': (1, 0),
'special_tokens_mask': (1, -100)}
@property
def model_max_length(self):
return self.config.model_max_length
@property
def mask_token(self):
return self._tokenizer.mask_token
@property
def mask_token_id(self):
return self._tokenizer.mask_token_id
@property
def pad_token_id(self):
return self._tokenizer.pad_token_id
@property
def cls_token_id(self):
return self._tokenizer.cls_token_id
@property
def sep_token_id(self):
return self._tokenizer.sep_token_id
@property
def vocab(self):
return self._tokenizer.vocab
def __len__(self):
"""
Size of the full vocabulary with the added tokens.
"""
return len(self._tokenizer)
def pad(self, *args, **kwargs):
return self._tokenizer.pad(*args, **kwargs)
def convert_tokens_to_ids(self, *args, **kwargs):
return self._tokenizer.convert_tokens_to_ids(*args, **kwargs)
def batch_decode(self, *args, **kwargs):
return self._tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
return self._tokenizer.decode(*args, **kwargs)
def tokenize(self, text, **kwargs):
return self._tokenizer.tokenize(text, **kwargs)
def encode(self, text, **kwargs):
input_ids = self._tokenizer.encode_plus(text, add_special_tokens=False, **kwargs)
input_ids = self.chunks(input_ids[: self.model_max_length - self.config.max_sentences],
chunk_size=self.config.max_sentence_length, special_id=self.type2id['input_ids'])
return input_ids
def get_special_tokens_mask(self, *args, **kwargs):
return self._tokenizer.get_special_tokens_mask(*args, **kwargs)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
try:
tokenizer = RobertaTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
except:
tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
return cls(tokenizer=tokenizer)
def save_pretrained(self, *args, **kwargs):
return self._tokenizer.save_pretrained( *args, **kwargs)
def __call__(self, text, **kwargs):
greedy_chunking = kwargs.pop('greedy_chunking', None)
text_pair = kwargs.pop('text_pair', None)
if isinstance(text[0], list):
batch = self.auto_chunking(text, **kwargs)
elif greedy_chunking:
# fixed uniform chunking
batch = self.uniform_chunking(text, **kwargs)
else:
# dynamic sentence splitting and grouping
batch = self.sentence_splitting(text, **kwargs)
if text_pair:
batch_b = self._tokenizer(text_pair, add_special_tokens=False,
padding=False, truncation=False)
for idx, sample in enumerate(batch['input_ids']):
n_sentences = sum(sample[::self.config.max_sentence_size])
for input_key in batch:
batch[input_key][idx][self.config.max_sentence_size * n_sentences:
self.config.max_sentence_size * (n_sentences + 1)] = \
self.pad_sentence(batch_b[input_key][idx],
special_id=(self.sep_token_id, self.pad_token_id)
if input_key == 'input_ids' else self.type2id[input_key])
return batch
def uniform_chunking(self, texts, **kwargs):
original_batch = self._tokenizer(texts, add_special_tokens=False, **kwargs)
batch = {input_type: [] for input_type in original_batch}
for input_type in original_batch:
fixed_batch = []
for example in original_batch[input_type]:
fixed_batch.append(self.chunks(example[: self.model_max_length - self.config.max_sentences],
chunk_size=self.config.max_sentence_length,
special_id=self.type2id[input_type]))
batch[input_type] = fixed_batch if isinstance(fixed_batch[0], list) else torch.stack(fixed_batch)
if kwargs['padding']:
batch = self.pad(batch,
padding=kwargs['padding'],
max_length=kwargs['max_length'],
pad_to_multiple_of=kwargs['max_length'])
return batch
def auto_chunking(self, texts, **kwargs):
batch = {}
for text_idx, text in enumerate(texts):
example_batch = self._tokenizer(text, add_special_tokens=False, **kwargs)
for input_key in example_batch:
key_inputs_list = []
for idx, example in enumerate(example_batch[input_key][:self.config.max_sentences]):
key_inputs_list.append(self.pad_sentence(example, special_id=self.type2id[input_key]))
if isinstance(key_inputs_list[0], list):
key_inputs_list = [token for sentence in key_inputs_list for token in sentence]
else:
key_inputs_list = torch.stack([token for sentence in key_inputs_list for token in sentence])
if input_key in batch:
batch[input_key].append(key_inputs_list)
else:
batch[input_key] = [key_inputs_list]
if kwargs['padding']:
batch = self.pad(batch,
padding=kwargs['padding'],
max_length=kwargs['max_length'],
pad_to_multiple_of=kwargs['max_length'])
return batch
def chunks(self, flat_inputs, chunk_size=128, special_id=0):
if isinstance(flat_inputs, list):
return self.list_chunks(flat_inputs, chunk_size, special_id)
else:
return self.tensor_chunks(flat_inputs, chunk_size, special_id)
def list_chunks(self, flat_inputs, chunk_size=128, special_id=(0, 0)):
"""Yield successive n-sized chunks from lst."""
structured_inputs = [[special_id[0] if sum(flat_inputs[i:i + chunk_size-1]) else special_id[1]]
+ flat_inputs[i:i + chunk_size-1] for i in range(0, len(flat_inputs), chunk_size-1)]
return [token_input for sentence_inputs in structured_inputs for token_input in sentence_inputs]
def tensor_chunks(self, flat_inputs, chunk_size=128, special_id=(0, 0)):
"""Yield successive n-sized chunks from lst."""
structured_inputs = torch.stack([torch.cat((torch.tensor([special_id[0] if flat_inputs[i:i + chunk_size-1].sum() else special_id[1]], dtype=torch.int),
flat_inputs[i:i + chunk_size-1])) for i in range(0, len(flat_inputs), chunk_size-1)])
return structured_inputs.reshape(-1)
def sentence_splitting(self, texts, **kwargs):
fixed_batch = []
doc_out = {}
for text in texts:
# sentence splitting
sentences = sent_tokenize(text)
# tokenization of sentences
sentences = self._tokenizer(sentences, add_special_tokens=False, padding=False, truncation=False)
# sentence grouping - merging short sentences to minimize padding
doc_out = self.sentence_grouping(sentences)
fixed_batch.append(doc_out)
# batchify examples
batch = {input_type: [] for input_type in doc_out}
for input_type in batch:
batch[input_type] = [example[input_type] for example in fixed_batch]
if not isinstance(batch[input_type][0], list):
batch[input_type] = torch.stack(batch[input_type])
if kwargs['padding']:
batch = self.pad(batch,
padding=kwargs['padding'],
max_length=kwargs['max_length'],
pad_to_multiple_of=kwargs['max_length'])
return batch
def sentence_grouping(self, sentences):
doc_out = {input_type: [] for input_type in sentences}
for input_type in sentences:
tmp_doc = []
tmp_sentence = []
for example in sentences[input_type]:
if len(tmp_doc) >= self.config.max_sentences:
break
if len(tmp_sentence) + len(example) <= self.config.max_sentence_length - 1:
tmp_sentence.extend(example)
else:
tmp_doc.append(self.pad_sentence(tmp_sentence if len(tmp_sentence) else example,
chunk_size=self.config.max_sentence_length,
special_id=self.type2id[input_type]))
tmp_sentence = example if len(tmp_sentence) else example[self.config.max_sentence_length:]
if len(tmp_sentence) and len(tmp_doc) < self.config.max_sentences:
tmp_doc.append(self.pad_sentence(tmp_sentence,
chunk_size=self.config.max_sentence_length,
special_id=self.type2id[input_type]))
doc_out[input_type] = [token for sentence in tmp_doc for token in sentence]
return doc_out
def pad_sentence(self, flat_input, chunk_size=128, special_id=(0, 0)):
if isinstance(flat_input, list):
return [special_id[0]] + flat_input[:chunk_size-1] + [self.pad_token_id] * max(0, chunk_size - len(flat_input) - 1)
else:
return torch.cat((torch.tensor([special_id[0] if flat_input[:chunk_size-1].sum()
else special_id[1]], dtype=torch.int),
flat_input[:chunk_size-1],
torch.tensor([self.pad_token_id] * max(0, chunk_size - len(flat_input) - 1), dtype=torch.int)
))
@classmethod
def register_for_auto_class(cls, auto_class="AutoModel"):
"""
Register this class with a given auto class. This should only be used for custom models as the ones in the
library are already mapped with an auto class.
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
Args:
auto_class (`str` or `type`, *optional*, defaults to `"TFAutoModel"`):
The auto class to register this new model with.
"""
if not isinstance(auto_class, str):
auto_class = auto_class.__name__
import transformers.models.auto as auto_module
if not hasattr(auto_module, auto_class):
raise ValueError(f"{auto_class} is not a valid auto class.")
cls._auto_class = auto_class
|