--- language: vi datasets: - vivos - common_voice metrics: - wer pipeline_tag: automatic-speech-recognition tags: - audio - speech - speechbrain - Transformer license: cc-by-nc-4.0 widget: - example_title: Example 1 src: https://huggingface.co/dragonSwing/wav2vec2-base-vn-270h/raw/main/example.mp3 - example_title: Example 2 src: https://huggingface.co/dragonSwing/wav2vec2-base-vn-270h/raw/main/example2.mp3 model-index: - name: Wav2vec2 Base Vietnamese 270h results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice vi type: common_voice args: vi metrics: - name: Test WER type: wer value: 9.66 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: vi metrics: - name: Test WER type: wer value: 5.57 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: vi metrics: - name: Test WER type: wer value: 5.76 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: VIVOS type: vivos args: vi metrics: - name: Test WER type: wer value: 3.70 --- # FINETUNE WAV2VEC 2.0 FOR SPEECH RECOGNITION ## Table of contents 1. [Documentation](#documentation) 2. [Installation](#installation) 3. [Usage](#usage) 4. [Logs and Visualization](#logs) ## Documentation Suppose you need a simple way to fine-tune the Wav2vec 2.0 model for the task of Speech Recognition on your datasets, then you came to the right place.
All documents related to this repo can be found here: - [Wav2vec2ForCTC](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC) - [Tutorial](https://huggingface.co/blog/fine-tune-wav2vec2-english) - [Code reference](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_ctc.py) ## Installation ``` pip install -r requirements.txt ``` ## Usage 1. Prepare your dataset - Your dataset can be in .txt or .csv format. - path and transcript columns are compulsory. The path column contains the paths to your stored audio files, depending on your dataset location, it can be either absolute paths or relative paths. The transcript column contains the corresponding transcripts to the audio paths. - Check out our [data_example.csv](dataset/data_example.csv) file for more information. 2. Configure the config.toml file 3. Run - Start training: ``` python train.py -c config.toml ``` - Continue to train from resume: ``` python train.py -c config.toml -r ``` - Load specific model and start training: ``` python train.py -c config.toml -p path/to/your/model.tar ``` ## Logs and Visualization The logs during the training will be stored, and you can visualize it using TensorBoard by running this command: ``` # specify the in config.json tensorboard --logdir ~/saved/ # specify a port 8080 tensorboard --logdir ~/saved/ --port 8080 ```