--- base_model: sentence-transformers/paraphrase-mpnet-base-v2 datasets: - zeroshot/twitter-financial-news-sentiment library_name: setfit metrics: - f1 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 'Listen to our latest #RegionalView, where Regional Economist Alex Marre discusses economic conditions at a conferen… https://t.co/kPM1I5vMfE' - text: Peter Thiel Divides Facebook Internally Over Ad Policy (Radio) - text: '$SCANX: Mid cap notable movers of interest -- Kohl''s (KSS) advances off of recent lows https://t.co/ZM3fmCoLx5' - text: US wants China trade deal but won't turn blind eye to Hong Kong, Trump national security advisor says https://t.co/dvrewpls4T - text: Salarius Pharma files for equity offering inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: zeroshot/twitter-financial-news-sentiment type: zeroshot/twitter-financial-news-sentiment split: test metrics: - type: f1 value: 0.6675041876046901 name: F1 --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [zeroshot/twitter-financial-news-sentiment](https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes - **Training Dataset:** [zeroshot/twitter-financial-news-sentiment](https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment) ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:--------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Bullish |