File size: 1,663 Bytes
de2954d b9f769b da8d846 b9f769b de2954d b9f769b de2954d e9320cf de2954d b9f769b e9320cf de2954d b9f769b de2954d b9f769b de2954d b9f769b de2954d b9f769b de2954d b9f769b de2954d b9f769b de2954d b9f769b de2954d b9f769b de2954d b9f769b e9320cf b9f769b de2954d b9f769b de2954d b9f769b e9320cf de2954d b9f769b de2954d b9f769b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: apache-2.0
base_model: Twitter/twhin-bert-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: financial-twhin-bert-large-3labels-pesudo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# financial-twhin-bert-large-3labels-pesudo
This model is a fine-tuned version of [Twitter/twhin-bert-large](https://huggingface.co/Twitter/twhin-bert-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5193
- Accuracy: 0.8646
- F1: 0.8689
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.6487905492726217e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.2072 | 1.0 | 2908 | 0.5193 | 0.8646 | 0.8689 |
| 0.1429 | 2.0 | 5816 | 0.5204 | 0.8890 | 0.8903 |
| 0.1062 | 3.0 | 8724 | 0.5502 | 0.8862 | 0.8881 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
|