File size: 1,663 Bytes
de2954d
b9f769b
 
 
 
 
 
 
 
da8d846
b9f769b
de2954d
 
b9f769b
 
de2954d
e9320cf
de2954d
b9f769b
 
e9320cf
 
 
de2954d
b9f769b
de2954d
b9f769b
de2954d
b9f769b
de2954d
b9f769b
de2954d
b9f769b
de2954d
b9f769b
de2954d
b9f769b
de2954d
b9f769b
de2954d
b9f769b
e9320cf
b9f769b
 
 
 
 
 
 
de2954d
b9f769b
de2954d
b9f769b
 
e9320cf
 
 
de2954d
 
b9f769b
de2954d
b9f769b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
base_model: Twitter/twhin-bert-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: financial-twhin-bert-large-3labels-pesudo
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# financial-twhin-bert-large-3labels-pesudo

This model is a fine-tuned version of [Twitter/twhin-bert-large](https://huggingface.co/Twitter/twhin-bert-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5193
- Accuracy: 0.8646
- F1: 0.8689

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2.6487905492726217e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.2072        | 1.0   | 2908 | 0.5193          | 0.8646   | 0.8689 |
| 0.1429        | 2.0   | 5816 | 0.5204          | 0.8890   | 0.8903 |
| 0.1062        | 3.0   | 8724 | 0.5502          | 0.8862   | 0.8881 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2