Upload folder using huggingface_hub
Browse files- README.md +392 -0
- config.json +2 -2
- model.safetensors +3 -0
- onnx/model.onnx +3 -0
- special_tokens_map.json +6 -42
- tokenizer.json +0 -0
- tokenizer_config.json +0 -7
README.md
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/deberta-v3-base
|
3 |
+
datasets:
|
4 |
+
- nyu-mll/glue
|
5 |
+
- aps/super_glue
|
6 |
+
- facebook/anli
|
7 |
+
- tasksource/babi_nli
|
8 |
+
- sick
|
9 |
+
- snli
|
10 |
+
- scitail
|
11 |
+
- hans
|
12 |
+
- alisawuffles/WANLI
|
13 |
+
- tasksource/recast
|
14 |
+
- sileod/probability_words_nli
|
15 |
+
- joey234/nan-nli
|
16 |
+
- pietrolesci/nli_fever
|
17 |
+
- pietrolesci/breaking_nli
|
18 |
+
- pietrolesci/conj_nli
|
19 |
+
- pietrolesci/fracas
|
20 |
+
- pietrolesci/dialogue_nli
|
21 |
+
- pietrolesci/mpe
|
22 |
+
- pietrolesci/dnc
|
23 |
+
- pietrolesci/recast_white
|
24 |
+
- pietrolesci/joci
|
25 |
+
- pietrolesci/robust_nli
|
26 |
+
- pietrolesci/robust_nli_is_sd
|
27 |
+
- pietrolesci/robust_nli_li_ts
|
28 |
+
- pietrolesci/gen_debiased_nli
|
29 |
+
- pietrolesci/add_one_rte
|
30 |
+
- tasksource/imppres
|
31 |
+
- hlgd
|
32 |
+
- paws
|
33 |
+
- medical_questions_pairs
|
34 |
+
- Anthropic/model-written-evals
|
35 |
+
- truthful_qa
|
36 |
+
- nightingal3/fig-qa
|
37 |
+
- tasksource/bigbench
|
38 |
+
- blimp
|
39 |
+
- cos_e
|
40 |
+
- cosmos_qa
|
41 |
+
- dream
|
42 |
+
- openbookqa
|
43 |
+
- qasc
|
44 |
+
- quartz
|
45 |
+
- quail
|
46 |
+
- head_qa
|
47 |
+
- sciq
|
48 |
+
- social_i_qa
|
49 |
+
- wiki_hop
|
50 |
+
- wiqa
|
51 |
+
- piqa
|
52 |
+
- hellaswag
|
53 |
+
- pkavumba/balanced-copa
|
54 |
+
- 12ml/e-CARE
|
55 |
+
- art
|
56 |
+
- winogrande
|
57 |
+
- codah
|
58 |
+
- ai2_arc
|
59 |
+
- definite_pronoun_resolution
|
60 |
+
- swag
|
61 |
+
- math_qa
|
62 |
+
- metaeval/utilitarianism
|
63 |
+
- mteb/amazon_counterfactual
|
64 |
+
- SetFit/insincere-questions
|
65 |
+
- SetFit/toxic_conversations
|
66 |
+
- turingbench/TuringBench
|
67 |
+
- trec
|
68 |
+
- tals/vitaminc
|
69 |
+
- hope_edi
|
70 |
+
- strombergnlp/rumoureval_2019
|
71 |
+
- ethos
|
72 |
+
- tweet_eval
|
73 |
+
- discovery
|
74 |
+
- pragmeval
|
75 |
+
- silicone
|
76 |
+
- lex_glue
|
77 |
+
- papluca/language-identification
|
78 |
+
- imdb
|
79 |
+
- rotten_tomatoes
|
80 |
+
- ag_news
|
81 |
+
- yelp_review_full
|
82 |
+
- financial_phrasebank
|
83 |
+
- poem_sentiment
|
84 |
+
- dbpedia_14
|
85 |
+
- amazon_polarity
|
86 |
+
- app_reviews
|
87 |
+
- hate_speech18
|
88 |
+
- sms_spam
|
89 |
+
- humicroedit
|
90 |
+
- snips_built_in_intents
|
91 |
+
- hate_speech_offensive
|
92 |
+
- yahoo_answers_topics
|
93 |
+
- pacovaldez/stackoverflow-questions
|
94 |
+
- zapsdcn/hyperpartisan_news
|
95 |
+
- zapsdcn/sciie
|
96 |
+
- zapsdcn/citation_intent
|
97 |
+
- go_emotions
|
98 |
+
- allenai/scicite
|
99 |
+
- liar
|
100 |
+
- relbert/lexical_relation_classification
|
101 |
+
- tasksource/linguisticprobing
|
102 |
+
- tasksource/crowdflower
|
103 |
+
- metaeval/ethics
|
104 |
+
- emo
|
105 |
+
- google_wellformed_query
|
106 |
+
- tweets_hate_speech_detection
|
107 |
+
- has_part
|
108 |
+
- blog_authorship_corpus
|
109 |
+
- launch/open_question_type
|
110 |
+
- health_fact
|
111 |
+
- commonsense_qa
|
112 |
+
- mc_taco
|
113 |
+
- ade_corpus_v2
|
114 |
+
- prajjwal1/discosense
|
115 |
+
- circa
|
116 |
+
- PiC/phrase_similarity
|
117 |
+
- copenlu/scientific-exaggeration-detection
|
118 |
+
- quarel
|
119 |
+
- mwong/fever-evidence-related
|
120 |
+
- numer_sense
|
121 |
+
- dynabench/dynasent
|
122 |
+
- raquiba/Sarcasm_News_Headline
|
123 |
+
- sem_eval_2010_task_8
|
124 |
+
- demo-org/auditor_review
|
125 |
+
- medmcqa
|
126 |
+
- RuyuanWan/Dynasent_Disagreement
|
127 |
+
- RuyuanWan/Politeness_Disagreement
|
128 |
+
- RuyuanWan/SBIC_Disagreement
|
129 |
+
- RuyuanWan/SChem_Disagreement
|
130 |
+
- RuyuanWan/Dilemmas_Disagreement
|
131 |
+
- lucasmccabe/logiqa
|
132 |
+
- wiki_qa
|
133 |
+
- tasksource/cycic_classification
|
134 |
+
- tasksource/cycic_multiplechoice
|
135 |
+
- tasksource/sts-companion
|
136 |
+
- tasksource/commonsense_qa_2.0
|
137 |
+
- tasksource/lingnli
|
138 |
+
- tasksource/monotonicity-entailment
|
139 |
+
- tasksource/arct
|
140 |
+
- tasksource/scinli
|
141 |
+
- tasksource/naturallogic
|
142 |
+
- onestop_qa
|
143 |
+
- demelin/moral_stories
|
144 |
+
- corypaik/prost
|
145 |
+
- aps/dynahate
|
146 |
+
- metaeval/syntactic-augmentation-nli
|
147 |
+
- tasksource/autotnli
|
148 |
+
- lasha-nlp/CONDAQA
|
149 |
+
- openai/webgpt_comparisons
|
150 |
+
- Dahoas/synthetic-instruct-gptj-pairwise
|
151 |
+
- metaeval/scruples
|
152 |
+
- metaeval/wouldyourather
|
153 |
+
- metaeval/defeasible-nli
|
154 |
+
- tasksource/help-nli
|
155 |
+
- metaeval/nli-veridicality-transitivity
|
156 |
+
- tasksource/lonli
|
157 |
+
- tasksource/dadc-limit-nli
|
158 |
+
- ColumbiaNLP/FLUTE
|
159 |
+
- tasksource/strategy-qa
|
160 |
+
- openai/summarize_from_feedback
|
161 |
+
- tasksource/folio
|
162 |
+
- yale-nlp/FOLIO
|
163 |
+
- tasksource/tomi-nli
|
164 |
+
- tasksource/avicenna
|
165 |
+
- stanfordnlp/SHP
|
166 |
+
- GBaker/MedQA-USMLE-4-options-hf
|
167 |
+
- sileod/wikimedqa
|
168 |
+
- declare-lab/cicero
|
169 |
+
- amydeng2000/CREAK
|
170 |
+
- tasksource/mutual
|
171 |
+
- inverse-scaling/NeQA
|
172 |
+
- inverse-scaling/quote-repetition
|
173 |
+
- inverse-scaling/redefine-math
|
174 |
+
- tasksource/puzzte
|
175 |
+
- tasksource/implicatures
|
176 |
+
- race
|
177 |
+
- tasksource/race-c
|
178 |
+
- tasksource/spartqa-yn
|
179 |
+
- tasksource/spartqa-mchoice
|
180 |
+
- tasksource/temporal-nli
|
181 |
+
- riddle_sense
|
182 |
+
- tasksource/clcd-english
|
183 |
+
- maximedb/twentyquestions
|
184 |
+
- metaeval/reclor
|
185 |
+
- tasksource/counterfactually-augmented-imdb
|
186 |
+
- tasksource/counterfactually-augmented-snli
|
187 |
+
- metaeval/cnli
|
188 |
+
- tasksource/boolq-natural-perturbations
|
189 |
+
- metaeval/acceptability-prediction
|
190 |
+
- metaeval/equate
|
191 |
+
- tasksource/ScienceQA_text_only
|
192 |
+
- Jiangjie/ekar_english
|
193 |
+
- tasksource/implicit-hate-stg1
|
194 |
+
- metaeval/chaos-mnli-ambiguity
|
195 |
+
- IlyaGusev/headline_cause
|
196 |
+
- tasksource/logiqa-2.0-nli
|
197 |
+
- tasksource/oasst2_dense_flat
|
198 |
+
- sileod/mindgames
|
199 |
+
- metaeval/ambient
|
200 |
+
- metaeval/path-naturalness-prediction
|
201 |
+
- civil_comments
|
202 |
+
- AndyChiang/cloth
|
203 |
+
- AndyChiang/dgen
|
204 |
+
- tasksource/I2D2
|
205 |
+
- webis/args_me
|
206 |
+
- webis/Touche23-ValueEval
|
207 |
+
- tasksource/starcon
|
208 |
+
- PolyAI/banking77
|
209 |
+
- tasksource/ConTRoL-nli
|
210 |
+
- tasksource/tracie
|
211 |
+
- tasksource/sherliic
|
212 |
+
- tasksource/sen-making
|
213 |
+
- tasksource/winowhy
|
214 |
+
- tasksource/robustLR
|
215 |
+
- CLUTRR/v1
|
216 |
+
- tasksource/logical-fallacy
|
217 |
+
- tasksource/parade
|
218 |
+
- tasksource/cladder
|
219 |
+
- tasksource/subjectivity
|
220 |
+
- tasksource/MOH
|
221 |
+
- tasksource/VUAC
|
222 |
+
- tasksource/TroFi
|
223 |
+
- sharc_modified
|
224 |
+
- tasksource/conceptrules_v2
|
225 |
+
- metaeval/disrpt
|
226 |
+
- tasksource/zero-shot-label-nli
|
227 |
+
- tasksource/com2sense
|
228 |
+
- tasksource/scone
|
229 |
+
- tasksource/winodict
|
230 |
+
- tasksource/fool-me-twice
|
231 |
+
- tasksource/monli
|
232 |
+
- tasksource/corr2cause
|
233 |
+
- lighteval/lsat_qa
|
234 |
+
- tasksource/apt
|
235 |
+
- zeroshot/twitter-financial-news-sentiment
|
236 |
+
- tasksource/icl-symbol-tuning-instruct
|
237 |
+
- tasksource/SpaceNLI
|
238 |
+
- sihaochen/propsegment
|
239 |
+
- HannahRoseKirk/HatemojiBuild
|
240 |
+
- tasksource/regset
|
241 |
+
- tasksource/esci
|
242 |
+
- lmsys/chatbot_arena_conversations
|
243 |
+
- neurae/dnd_style_intents
|
244 |
+
- hitachi-nlp/FLD.v2
|
245 |
+
- tasksource/SDOH-NLI
|
246 |
+
- allenai/scifact_entailment
|
247 |
+
- tasksource/feasibilityQA
|
248 |
+
- tasksource/simple_pair
|
249 |
+
- tasksource/AdjectiveScaleProbe-nli
|
250 |
+
- tasksource/resnli
|
251 |
+
- tasksource/SpaRTUN
|
252 |
+
- tasksource/ReSQ
|
253 |
+
- tasksource/semantic_fragments_nli
|
254 |
+
- MoritzLaurer/dataset_train_nli
|
255 |
+
- tasksource/stepgame
|
256 |
+
- tasksource/nlgraph
|
257 |
+
- tasksource/oasst2_pairwise_rlhf_reward
|
258 |
+
- tasksource/hh-rlhf
|
259 |
+
- tasksource/ruletaker
|
260 |
+
- qbao775/PARARULE-Plus
|
261 |
+
- tasksource/proofwriter
|
262 |
+
- tasksource/logical-entailment
|
263 |
+
- tasksource/nope
|
264 |
+
- tasksource/LogicNLI
|
265 |
+
- kiddothe2b/contract-nli
|
266 |
+
- AshtonIsNotHere/nli4ct_semeval2024
|
267 |
+
- tasksource/lsat-ar
|
268 |
+
- tasksource/lsat-rc
|
269 |
+
- AshtonIsNotHere/biosift-nli
|
270 |
+
- tasksource/brainteasers
|
271 |
+
- Anthropic/persuasion
|
272 |
+
- erbacher/AmbigNQ-clarifying-question
|
273 |
+
- tasksource/SIGA-nli
|
274 |
+
- unigram/FOL-nli
|
275 |
+
- tasksource/goal-step-wikihow
|
276 |
+
- GGLab/PARADISE
|
277 |
+
- tasksource/doc-nli
|
278 |
+
- tasksource/mctest-nli
|
279 |
+
- tasksource/patent-phrase-similarity
|
280 |
+
- tasksource/natural-language-satisfiability
|
281 |
+
- tasksource/idioms-nli
|
282 |
+
- tasksource/lifecycle-entailment
|
283 |
+
- nvidia/HelpSteer
|
284 |
+
- nvidia/HelpSteer2
|
285 |
+
- sadat2307/MSciNLI
|
286 |
+
- pushpdeep/UltraFeedback-paired
|
287 |
+
- tasksource/AES2-essay-scoring
|
288 |
+
- tasksource/english-grading
|
289 |
+
- tasksource/wice
|
290 |
+
- Dzeniks/hover
|
291 |
+
- tasksource/tasksource_dpo_pairs
|
292 |
+
library_name: transformers
|
293 |
+
pipeline_tag: zero-shot-classification
|
294 |
+
tags:
|
295 |
+
- text-classification
|
296 |
+
- zero-shot-classification
|
297 |
+
license: apache-2.0
|
298 |
+
---
|
299 |
+
|
300 |
+
# Model Card for Model ID
|
301 |
+
|
302 |
+
deberta-v3-base with context length of 1280 fine-tuned on tasksource for 250k steps. I oversampled long NLI tasks (ConTRoL, doc-nli).
|
303 |
+
Training data include helpsteer v1/v2, logical reasoning tasks (FOLIO, FOL-nli, LogicNLI...), OASST, hh/rlhf, linguistics oriented NLI tasks, tasksource-dpo, fact verification tasks.
|
304 |
+
|
305 |
+
This checkpoint has strong zero-shot validation performance on many tasks (e.g. 70% on WNLI), and can be used for:
|
306 |
+
- Zero-shot entailment-based classification for arbitrary labels [ZS].
|
307 |
+
- Natural language inference [NLI]
|
308 |
+
- Further fine-tuning on a new task or tasksource task (classification, token classification, reward modeling or multiple-choice) [FT].
|
309 |
+
|
310 |
+
| dataset | accuracy |
|
311 |
+
|:----------------------------|----------------:|
|
312 |
+
| anli/a1 | 63.3 |
|
313 |
+
| anli/a2 | 47.2 |
|
314 |
+
| anli/a3 | 49.4 |
|
315 |
+
| nli_fever | 79.4 |
|
316 |
+
| FOLIO | 61.8 |
|
317 |
+
| ConTRoL-nli | 63.3 |
|
318 |
+
| cladder | 71.1 |
|
319 |
+
| zero-shot-label-nli | 74.4 |
|
320 |
+
| chatbot_arena_conversations | 72.2 |
|
321 |
+
| oasst2_pairwise_rlhf_reward | 73.9 |
|
322 |
+
| doc-nli | 90.0 |
|
323 |
+
|
324 |
+
Zero-shot GPT-4 scores 61% on FOLIO (logical reasoning), 62% on cladder (probabilistic reasoning) and 56.4% on ConTRoL (long context NLI).
|
325 |
+
|
326 |
+
# [ZS] Zero-shot classification pipeline
|
327 |
+
```python
|
328 |
+
from transformers import pipeline
|
329 |
+
classifier = pipeline("zero-shot-classification",model="tasksource/deberta-base-long-nli")
|
330 |
+
|
331 |
+
text = "one day I will see the world"
|
332 |
+
candidate_labels = ['travel', 'cooking', 'dancing']
|
333 |
+
classifier(text, candidate_labels)
|
334 |
+
```
|
335 |
+
NLI training data of this model includes [label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli), a NLI dataset specially constructed to improve this kind of zero-shot classification.
|
336 |
+
|
337 |
+
# [NLI] Natural language inference pipeline
|
338 |
+
|
339 |
+
```python
|
340 |
+
from transformers import pipeline
|
341 |
+
pipe = pipeline("text-classification",model="tasksource/deberta-base-long-nli")
|
342 |
+
pipe([dict(text='there is a cat',
|
343 |
+
text_pair='there is a black cat')]) #list of (premise,hypothesis)
|
344 |
+
# [{'label': 'neutral', 'score': 0.9952911138534546}]
|
345 |
+
```
|
346 |
+
|
347 |
+
# [TA] Tasksource-adapters: 1 line access to hundreds of tasks
|
348 |
+
|
349 |
+
```python
|
350 |
+
# !pip install tasknet
|
351 |
+
import tasknet as tn
|
352 |
+
pipe = tn.load_pipeline('tasksource/deberta-base-long-nli','glue/sst2') # works for 500+ tasksource tasks
|
353 |
+
pipe(['That movie was great !', 'Awful movie.'])
|
354 |
+
# [{'label': 'positive', 'score': 0.9956}, {'label': 'negative', 'score': 0.9967}]
|
355 |
+
```
|
356 |
+
The list of tasks is available in model config.json.
|
357 |
+
This is more efficient than ZS since it requires only one forward pass per example, but it is less flexible.
|
358 |
+
|
359 |
+
|
360 |
+
# [FT] Tasknet: 3 lines fine-tuning
|
361 |
+
|
362 |
+
```python
|
363 |
+
# !pip install tasknet
|
364 |
+
import tasknet as tn
|
365 |
+
hparams=dict(model_name='tasksource/deberta-base-long-nli', learning_rate=2e-5)
|
366 |
+
model, trainer = tn.Model_Trainer([tn.AutoTask("glue/rte")], hparams)
|
367 |
+
trainer.train()
|
368 |
+
```
|
369 |
+
|
370 |
+
|
371 |
+
# Citation
|
372 |
+
|
373 |
+
More details on this [article:](https://aclanthology.org/2024.lrec-main.1361/)
|
374 |
+
```
|
375 |
+
@inproceedings{sileo-2024-tasksource,
|
376 |
+
title = "tasksource: A Large Collection of {NLP} tasks with a Structured Dataset Preprocessing Framework",
|
377 |
+
author = "Sileo, Damien",
|
378 |
+
editor = "Calzolari, Nicoletta and
|
379 |
+
Kan, Min-Yen and
|
380 |
+
Hoste, Veronique and
|
381 |
+
Lenci, Alessandro and
|
382 |
+
Sakti, Sakriani and
|
383 |
+
Xue, Nianwen",
|
384 |
+
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
|
385 |
+
month = may,
|
386 |
+
year = "2024",
|
387 |
+
address = "Torino, Italia",
|
388 |
+
publisher = "ELRA and ICCL",
|
389 |
+
url = "https://aclanthology.org/2024.lrec-main.1361",
|
390 |
+
pages = "15655--15684",
|
391 |
+
}
|
392 |
+
```
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"DebertaV2ForSequenceClassification"
|
5 |
],
|
@@ -1101,7 +1101,7 @@
|
|
1101 |
"blimp-2"
|
1102 |
],
|
1103 |
"torch_dtype": "float32",
|
1104 |
-
"transformers_version": "4.
|
1105 |
"type_vocab_size": 0,
|
1106 |
"vocab_size": 128100
|
1107 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "microsoft/deberta-v3-base",
|
3 |
"architectures": [
|
4 |
"DebertaV2ForSequenceClassification"
|
5 |
],
|
|
|
1101 |
"blimp-2"
|
1102 |
],
|
1103 |
"torch_dtype": "float32",
|
1104 |
+
"transformers_version": "4.42.3",
|
1105 |
"type_vocab_size": 0,
|
1106 |
"vocab_size": 128100
|
1107 |
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71cace06873870322ffa93e4005999961cef6d6b08263b01aad832ded23d94ae
|
3 |
+
size 737722356
|
onnx/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd8a820f52d46be08416c5449b75d75f4a9cd498f9130ad723dced4dedd3fc3e
|
3 |
+
size 738566384
|
special_tokens_map.json
CHANGED
@@ -1,46 +1,10 @@
|
|
1 |
{
|
2 |
-
"bos_token":
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
},
|
9 |
-
"cls_token": {
|
10 |
-
"content": "[CLS]",
|
11 |
-
"lstrip": false,
|
12 |
-
"normalized": false,
|
13 |
-
"rstrip": false,
|
14 |
-
"single_word": false
|
15 |
-
},
|
16 |
-
"eos_token": {
|
17 |
-
"content": "[SEP]",
|
18 |
-
"lstrip": false,
|
19 |
-
"normalized": false,
|
20 |
-
"rstrip": false,
|
21 |
-
"single_word": false
|
22 |
-
},
|
23 |
-
"mask_token": {
|
24 |
-
"content": "[MASK]",
|
25 |
-
"lstrip": false,
|
26 |
-
"normalized": false,
|
27 |
-
"rstrip": false,
|
28 |
-
"single_word": false
|
29 |
-
},
|
30 |
-
"pad_token": {
|
31 |
-
"content": "[PAD]",
|
32 |
-
"lstrip": false,
|
33 |
-
"normalized": false,
|
34 |
-
"rstrip": false,
|
35 |
-
"single_word": false
|
36 |
-
},
|
37 |
-
"sep_token": {
|
38 |
-
"content": "[SEP]",
|
39 |
-
"lstrip": false,
|
40 |
-
"normalized": false,
|
41 |
-
"rstrip": false,
|
42 |
-
"single_word": false
|
43 |
-
},
|
44 |
"unk_token": {
|
45 |
"content": "[UNK]",
|
46 |
"lstrip": false,
|
|
|
1 |
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
"unk_token": {
|
9 |
"content": "[UNK]",
|
10 |
"lstrip": false,
|
tokenizer.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -47,19 +47,12 @@
|
|
47 |
"do_lower_case": false,
|
48 |
"eos_token": "[SEP]",
|
49 |
"mask_token": "[MASK]",
|
50 |
-
"max_length": 1280,
|
51 |
"model_max_length": 1000000000000000019884624838656,
|
52 |
-
"pad_to_multiple_of": null,
|
53 |
"pad_token": "[PAD]",
|
54 |
-
"pad_token_type_id": 0,
|
55 |
-
"padding_side": "right",
|
56 |
"sep_token": "[SEP]",
|
57 |
"sp_model_kwargs": {},
|
58 |
"split_by_punct": false,
|
59 |
-
"stride": 0,
|
60 |
"tokenizer_class": "DebertaV2Tokenizer",
|
61 |
-
"truncation_side": "right",
|
62 |
-
"truncation_strategy": "longest_first",
|
63 |
"unk_token": "[UNK]",
|
64 |
"vocab_type": "spm"
|
65 |
}
|
|
|
47 |
"do_lower_case": false,
|
48 |
"eos_token": "[SEP]",
|
49 |
"mask_token": "[MASK]",
|
|
|
50 |
"model_max_length": 1000000000000000019884624838656,
|
|
|
51 |
"pad_token": "[PAD]",
|
|
|
|
|
52 |
"sep_token": "[SEP]",
|
53 |
"sp_model_kwargs": {},
|
54 |
"split_by_punct": false,
|
|
|
55 |
"tokenizer_class": "DebertaV2Tokenizer",
|
|
|
|
|
56 |
"unk_token": "[UNK]",
|
57 |
"vocab_type": "spm"
|
58 |
}
|