kai-2054 commited on
Commit
640baf1
1 Parent(s): 3f3a20e

layoutlmv3-finetuned-cord_100

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: layoutlmv3-finetuned-cord_100
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # layoutlmv3-finetuned-cord_100
20
+
21
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.3036
24
+ - Precision: 0.9149
25
+ - Recall: 0.9309
26
+ - F1: 0.9228
27
+ - Accuracy: 0.9419
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 1e-05
47
+ - train_batch_size: 5
48
+ - eval_batch_size: 5
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - training_steps: 2500
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 4.17 | 250 | 0.6391 | 0.8080 | 0.8093 | 0.8087 | 0.8312 |
59
+ | 0.9327 | 8.33 | 500 | 0.3636 | 0.8790 | 0.8891 | 0.8840 | 0.9088 |
60
+ | 0.9327 | 12.5 | 750 | 0.3144 | 0.9001 | 0.9103 | 0.9052 | 0.9288 |
61
+ | 0.1743 | 16.67 | 1000 | 0.2957 | 0.9102 | 0.9240 | 0.9170 | 0.9360 |
62
+ | 0.1743 | 20.83 | 1250 | 0.2963 | 0.9109 | 0.9248 | 0.9178 | 0.9334 |
63
+ | 0.0551 | 25.0 | 1500 | 0.2943 | 0.9207 | 0.9263 | 0.9235 | 0.9411 |
64
+ | 0.0551 | 29.17 | 1750 | 0.3034 | 0.9145 | 0.9263 | 0.9203 | 0.9360 |
65
+ | 0.0249 | 33.33 | 2000 | 0.3059 | 0.9162 | 0.9301 | 0.9231 | 0.9394 |
66
+ | 0.0249 | 37.5 | 2250 | 0.3019 | 0.9147 | 0.9293 | 0.9220 | 0.9385 |
67
+ | 0.0153 | 41.67 | 2500 | 0.3036 | 0.9149 | 0.9309 | 0.9228 | 0.9419 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.35.2
73
+ - Pytorch 2.1.0+cu121
74
+ - Datasets 2.16.1
75
+ - Tokenizers 0.15.0