layoutlmv3-finetuned-cord_100
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: layoutlmv3-finetuned-cord_100
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# layoutlmv3-finetuned-cord_100
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.3036
|
24 |
+
- Precision: 0.9149
|
25 |
+
- Recall: 0.9309
|
26 |
+
- F1: 0.9228
|
27 |
+
- Accuracy: 0.9419
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 5
|
48 |
+
- eval_batch_size: 5
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- training_steps: 2500
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 4.17 | 250 | 0.6391 | 0.8080 | 0.8093 | 0.8087 | 0.8312 |
|
59 |
+
| 0.9327 | 8.33 | 500 | 0.3636 | 0.8790 | 0.8891 | 0.8840 | 0.9088 |
|
60 |
+
| 0.9327 | 12.5 | 750 | 0.3144 | 0.9001 | 0.9103 | 0.9052 | 0.9288 |
|
61 |
+
| 0.1743 | 16.67 | 1000 | 0.2957 | 0.9102 | 0.9240 | 0.9170 | 0.9360 |
|
62 |
+
| 0.1743 | 20.83 | 1250 | 0.2963 | 0.9109 | 0.9248 | 0.9178 | 0.9334 |
|
63 |
+
| 0.0551 | 25.0 | 1500 | 0.2943 | 0.9207 | 0.9263 | 0.9235 | 0.9411 |
|
64 |
+
| 0.0551 | 29.17 | 1750 | 0.3034 | 0.9145 | 0.9263 | 0.9203 | 0.9360 |
|
65 |
+
| 0.0249 | 33.33 | 2000 | 0.3059 | 0.9162 | 0.9301 | 0.9231 | 0.9394 |
|
66 |
+
| 0.0249 | 37.5 | 2250 | 0.3019 | 0.9147 | 0.9293 | 0.9220 | 0.9385 |
|
67 |
+
| 0.0153 | 41.67 | 2500 | 0.3036 | 0.9149 | 0.9309 | 0.9228 | 0.9419 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.35.2
|
73 |
+
- Pytorch 2.1.0+cu121
|
74 |
+
- Datasets 2.16.1
|
75 |
+
- Tokenizers 0.15.0
|