Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 274.17 +/- 17.57
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dd2bc712b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd2bc712c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd2bc712cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd2bc712d40>", "_build": "<function ActorCriticPolicy._build at 0x7dd2bc712dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7dd2bc712e60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd2bc712ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd2bc712f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7dd2bc713010>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd2bc7130a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd2bc713130>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd2bc7131c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dd2bc6c25c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719325904397892769, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADabTy4fpS5snzuOtAfBzaQx3E7d2ALugAAgD8AAIA/gPMtvdK9zTxgPb29fSqVvhirU752qYM9AAAAAAAAAAAzY0G99thaum2LWTqnLuw19bagOyiGerkAAIA/AACAP80A7TyPDnq64kW8u8FXhDjwYlS6xahcOgAAgD8AAIA/gA9wPVz7SbrW5jq775DCtSGY5bm2RDE1AACAPwAAgD8zts+8SDmBujleu7pzJzK210H1OnaW1jkAAIA/AACAP9qYiL1cE026yDSAu0cnWzioFDo6LrMTOgAAgD8AAIA/miFGvUiTjboezuA6z3/HNaVZR7uugwK6AACAPwAAgD9mS7e8j3o+utBuzbt65NI0gI4EuyS9P7QAAIA/AACAP4CYWD03srI+Rto3voFsn76iC8y9JAq8vQAAAAAAAAAAZs7du/vL7j2WUyw+4fuVvu9bND7I3sW8AAAAAAAAAADNl+q9KtKXPtBtKj7JxK2+9qk6vTNSqTwAAAAAAAAAAGZezj0pECu60oqEuYdFpjiS5F47lHqGOAAAgD8AAIA/M80lPIUrrbl4bck6tGyWOT1SJ7ujnGm5AACAPwAAgD+aaUI7hWvHuf4z7DojFpg2UDkIuw0XC7oAAIA/AACAP7PbRr4UTRk/21I/Pn9mtb4wDxO+sZcIPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQoh7E5yU+MAWyUTegDjAF0lEdAlwJq86FM7HV9lChoBkdAZD00iyIHkmgHTegDaAhHQJda23fAKv51fZQoaAZHQGStHuiN83NoB03oA2gIR0CXXCrvb48EdX2UKGgGR0BxOQ2ETQE7aAdN0ANoCEdAl1ztc4YJmnV9lChoBkdAZj8fthNM5GgHTegDaAhHQJdsg4T9KmN1fZQoaAZHQFqY9Wp6yB1oB03oA2gIR0CXbMyrPt2LdX2UKGgGR0BmY1fsu3+daAdN6ANoCEdAl3QvbsWweXV9lChoBkdAXYyMhouf3GgHTegDaAhHQJd7dSgoPTZ1fZQoaAZHQGXI9q1w5vNoB03oA2gIR0CXgJVLBbfQdX2UKGgGR0BlId74SHuaaAdN6ANoCEdAl4Ezw2ETQHV9lChoBkdAZaoBWgezU2gHTegDaAhHQJeKourZJ051fZQoaAZHQGFOjkU9IPNoB03oA2gIR0CXjiPM0P6LdX2UKGgGR0BgrI3DNyHVaAdN6ANoCEdAl473Gff4y3V9lChoBkdAaBUuPFNtZWgHTegDaAhHQJeQlmwqy4Z1fZQoaAZHQGZNx2jfvWpoB03oA2gIR0CXlTYuCf6HdX2UKGgGR0BhoEIsyzomaAdN6ANoCEdAl5uTnA6+4HV9lChoBkdAYe/kbxVhkWgHTegDaAhHQJedTH7xd6d1fZQoaAZHQGbdoJiRW91oB03oA2gIR0CXnoXcgyM2dX2UKGgGR0BltvEGZ/kOaAdN6ANoCEdAl595/0/W2HV9lChoBkdAYhG580DU3GgHTegDaAhHQJef9Jd0JWx1fZQoaAZHQGGjSvkili1oB03oA2gIR0CXrVoR7JGOdX2UKGgGR0Bmx/1ct5D7aAdN6ANoCEdAl62XHim2s3V9lChoBkdAYVMPNmlImWgHTegDaAhHQJez0iW3Sa51fZQoaAZHQHHALzGxUvRoB01uA2gIR0CXuL9kSVW0dX2UKGgGR0BjaPUMG5c1aAdN6ANoCEdAl7xCG8EmpnV9lChoBkdAZIcbutwJgWgHTegDaAhHQJfCritJWeZ1fZQoaAZHQGWo0BOpKjBoB03oA2gIR0CXyhBbwBo3dX2UKGgGR0Bk2x1A7gbZaAdN6ANoCEdAl8xgTZg5R3V9lChoBkdAZp0c5Ke05WgHTegDaAhHQJfNHeUILPV1fZQoaAZHQGVshfrrxAloB03oA2gIR0CXzpvKU3XJdX2UKGgGR0BdkFQ2uPmxaAdN6ANoCEdAl9NvCyhSL3V9lChoBkdAZhiu/UONHmgHTegDaAhHQJfaXYJ3PiV1fZQoaAZHQGWJ+8wpON5oB03oA2gIR0CX3CaiKziTdX2UKGgGR0BmD0wg1WKeaAdN6ANoCEdAl91xk3CKrXV9lChoBkdAZ8/zundfs2gHTegDaAhHQJfeev+wTuh1fZQoaAZHQF+c/rB0p3JoB03oA2gIR0CX3wsK9f1IdX2UKGgGR0BjpXnKW9lFaAdN6ANoCEdAmEXlkDp1R3V9lChoBkdAXbVvddmg8WgHTegDaAhHQJhGMYTCcgB1fZQoaAZHQGMLTEaVD8doB03oA2gIR0CYTTI3BHkMdX2UKGgGR0Bmh2kzoEB9aAdN6ANoCEdAmFGHmA9V3nV9lChoBkdAZlGXsPatcWgHTegDaAhHQJhUJ/OMVDd1fZQoaAZHQGNfPuXu3MJoB03oA2gIR0CYWZPz4DcNdX2UKGgGR0Bkw/MdLg4waAdN6ANoCEdAmGNTzyz5XXV9lChoBkdAYqWdp7CzkmgHTegDaAhHQJhl4+W4Vh11fZQoaAZHQGSwrmQr+YNoB03oA2gIR0CYZq9gF5fMdX2UKGgGR0Bj4G0VrRBvaAdN6ANoCEdAmGhVKwpvxnV9lChoBkdAYTehY/3WWmgHTegDaAhHQJhtIHdGiHt1fZQoaAZHQGB1E+HJtBRoB03oA2gIR0CYc3sunMt9dX2UKGgGR0BleF5IH1OCaAdN6ANoCEdAmHVS8an753V9lChoBkdAYeFTNt65XmgHTegDaAhHQJh2nMkhRqJ1fZQoaAZHQGVmJ+c6Nl1oB03oA2gIR0CYd5/UONHZdX2UKGgGR0Bl6/s5XEIgaAdN6ANoCEdAmHgubmU4aXV9lChoBkdAYfs1UlzEJmgHTegDaAhHQJiFq8XenAJ1fZQoaAZHQGYZ0ZeiSJVoB03oA2gIR0CYhei0fHPvdX2UKGgGR0BnASGDcuanaAdN6ANoCEdAmI1i1qnFYXV9lChoBkdAZso0rK/202gHTegDaAhHQJiTMrEtNBZ1fZQoaAZHQGlarFOwgT1oB03oA2gIR0CYlotE5QxfdX2UKGgGR0BkjLpLVWjoaAdN6ANoCEdAmJtpmVZ9u3V9lChoBkdAXqddrwe/6GgHTegDaAhHQJiitM0xdpt1fZQoaAZHQGVNJe3QUpNoB03oA2gIR0CYpT5Lh73PdX2UKGgGR0Bk351xKg7HaAdN6ANoCEdAmKYJhWo3rHV9lChoBkdAYYhC1JDmbWgHTegDaAhHQJinuMVDa5B1fZQoaAZHQGObJ1RtP55oB03oA2gIR0CYrOzND+irdX2UKGgGR0BlDDTpgTh6aAdN6ANoCEdAmLPbTH80lHV9lChoBkdAZohdgOSW7mgHTegDaAhHQJi1kbEP1+R1fZQoaAZHQGD+jUVi4KBoB03oA2gIR0CYtuPEbYK6dX2UKGgGR0Bhe19Ujs2OaAdN6ANoCEdAmLgLYXfqHHV9lChoBkdAZFjtJnQIEGgHTegDaAhHQJi4mbqhUR51fZQoaAZHQGPZdmpVCHBoB03oA2gIR0CZHzU3n6l+dX2UKGgGR0BpOH0f5k9VaAdN6ANoCEdAmR+HpOerdXV9lChoBkdAZf33QD3dsWgHTegDaAhHQJkmie8PFvR1fZQoaAZHQGMwuNPxhDxoB03oA2gIR0CZKx/7BO58dX2UKGgGR0BhNgg3cYZVaAdN6ANoCEdAmS7I6Oo5xXV9lChoBkdAYXTChvitJWgHTegDaAhHQJk1VMdtEXt1fZQoaAZHQGWdfnnuAqdoB03oA2gIR0CZPYSzgMtsdX2UKGgGR0BgmOoNutOmaAdN6ANoCEdAmUBWcOLBK3V9lChoBkdAZ7ZOAy2x6mgHTegDaAhHQJlBQaJhvzh1fZQoaAZHQGHC3umaYu1oB03oA2gIR0CZQx4MF2V3dX2UKGgGR0Bk1QGjbi6yaAdN6ANoCEdAmUi87+1jRXV9lChoBkdAZLvs4T9KmWgHTegDaAhHQJlQdM6BAfN1fZQoaAZHQGQNMLORkmRoB03oA2gIR0CZUo5Z8rqddX2UKGgGR0Bm+zrZ8KG+aAdN6ANoCEdAmVQOFcpsoHV9lChoBkdAY5Oa3I+4b2gHTegDaAhHQJlVPGaQV9F1fZQoaAZHQGb0ZQHiWE9oB03oA2gIR0CZVdr0rbxmdX2UKGgGR0Bl3w0oBq9HaAdN6ANoCEdAmWTwmeDnNnV9lChoBkdAYNcMCLdepmgHTegDaAhHQJllTgbZOBV1fZQoaAZHQGl8d87ZFodoB03oA2gIR0CZbkA80UGndX2UKGgGR0BlAI150KZ2aAdN6ANoCEdAmXJfEGZ/kXV9lChoBkdAZvC2v0RODmgHTegDaAhHQJl0qzSkTHt1fZQoaAZHQGGM4H5aePJoB03oA2gIR0CZeJaJyhi9dX2UKGgGR0Bo0HVTaTOgaAdN6ANoCEdAmX9QCjk+5nV9lChoBkdAY2hFOO8012gHTegDaAhHQJmBo9xIatN1fZQoaAZHQGdpk4ecQRRoB03oA2gIR0CZgmTFERapdX2UKGgGR0Bo+y4jKPn0aAdN6ANoCEdAmYQNjPOY6XV9lChoBkdAaD2guAZsK2gHTegDaAhHQJmJG0QbuMN1fZQoaAZHQGICeTmnwXtoB03oA2gIR0CZj6LkCFK1dX2UKGgGR0BlZI6fapPzaAdN6ANoCEdAmZFUAtFrmHV9lChoBkdAYlj4sVclgWgHTegDaAhHQJmSjs9jgAJ1fZQoaAZHQGY+n9Nvfj1oB03oA2gIR0CZk44h2W6cdX2UKGgGR0BmwJYs/Y8MaAdN6ANoCEdAmZQX/o7muHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c418994649162efd5c23e3689bbe9586b482293a12c825148594ae423965d51e
|
3 |
+
size 147578
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7dd2bc712b90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd2bc712c20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd2bc712cb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd2bc712d40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7dd2bc712dd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7dd2bc712e60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd2bc712ef0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd2bc712f80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7dd2bc713010>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd2bc7130a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd2bc713130>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd2bc7131c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7dd2bc6c25c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1719325904397892769,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADabTy4fpS5snzuOtAfBzaQx3E7d2ALugAAgD8AAIA/gPMtvdK9zTxgPb29fSqVvhirU752qYM9AAAAAAAAAAAzY0G99thaum2LWTqnLuw19bagOyiGerkAAIA/AACAP80A7TyPDnq64kW8u8FXhDjwYlS6xahcOgAAgD8AAIA/gA9wPVz7SbrW5jq775DCtSGY5bm2RDE1AACAPwAAgD8zts+8SDmBujleu7pzJzK210H1OnaW1jkAAIA/AACAP9qYiL1cE026yDSAu0cnWzioFDo6LrMTOgAAgD8AAIA/miFGvUiTjboezuA6z3/HNaVZR7uugwK6AACAPwAAgD9mS7e8j3o+utBuzbt65NI0gI4EuyS9P7QAAIA/AACAP4CYWD03srI+Rto3voFsn76iC8y9JAq8vQAAAAAAAAAAZs7du/vL7j2WUyw+4fuVvu9bND7I3sW8AAAAAAAAAADNl+q9KtKXPtBtKj7JxK2+9qk6vTNSqTwAAAAAAAAAAGZezj0pECu60oqEuYdFpjiS5F47lHqGOAAAgD8AAIA/M80lPIUrrbl4bck6tGyWOT1SJ7ujnGm5AACAPwAAgD+aaUI7hWvHuf4z7DojFpg2UDkIuw0XC7oAAIA/AACAP7PbRr4UTRk/21I/Pn9mtb4wDxO+sZcIPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQoh7E5yU+MAWyUTegDjAF0lEdAlwJq86FM7HV9lChoBkdAZD00iyIHkmgHTegDaAhHQJda23fAKv51fZQoaAZHQGStHuiN83NoB03oA2gIR0CXXCrvb48EdX2UKGgGR0BxOQ2ETQE7aAdN0ANoCEdAl1ztc4YJmnV9lChoBkdAZj8fthNM5GgHTegDaAhHQJdsg4T9KmN1fZQoaAZHQFqY9Wp6yB1oB03oA2gIR0CXbMyrPt2LdX2UKGgGR0BmY1fsu3+daAdN6ANoCEdAl3QvbsWweXV9lChoBkdAXYyMhouf3GgHTegDaAhHQJd7dSgoPTZ1fZQoaAZHQGXI9q1w5vNoB03oA2gIR0CXgJVLBbfQdX2UKGgGR0BlId74SHuaaAdN6ANoCEdAl4Ezw2ETQHV9lChoBkdAZaoBWgezU2gHTegDaAhHQJeKourZJ051fZQoaAZHQGFOjkU9IPNoB03oA2gIR0CXjiPM0P6LdX2UKGgGR0BgrI3DNyHVaAdN6ANoCEdAl473Gff4y3V9lChoBkdAaBUuPFNtZWgHTegDaAhHQJeQlmwqy4Z1fZQoaAZHQGZNx2jfvWpoB03oA2gIR0CXlTYuCf6HdX2UKGgGR0BhoEIsyzomaAdN6ANoCEdAl5uTnA6+4HV9lChoBkdAYe/kbxVhkWgHTegDaAhHQJedTH7xd6d1fZQoaAZHQGbdoJiRW91oB03oA2gIR0CXnoXcgyM2dX2UKGgGR0BltvEGZ/kOaAdN6ANoCEdAl595/0/W2HV9lChoBkdAYhG580DU3GgHTegDaAhHQJef9Jd0JWx1fZQoaAZHQGGjSvkili1oB03oA2gIR0CXrVoR7JGOdX2UKGgGR0Bmx/1ct5D7aAdN6ANoCEdAl62XHim2s3V9lChoBkdAYVMPNmlImWgHTegDaAhHQJez0iW3Sa51fZQoaAZHQHHALzGxUvRoB01uA2gIR0CXuL9kSVW0dX2UKGgGR0BjaPUMG5c1aAdN6ANoCEdAl7xCG8EmpnV9lChoBkdAZIcbutwJgWgHTegDaAhHQJfCritJWeZ1fZQoaAZHQGWo0BOpKjBoB03oA2gIR0CXyhBbwBo3dX2UKGgGR0Bk2x1A7gbZaAdN6ANoCEdAl8xgTZg5R3V9lChoBkdAZp0c5Ke05WgHTegDaAhHQJfNHeUILPV1fZQoaAZHQGVshfrrxAloB03oA2gIR0CXzpvKU3XJdX2UKGgGR0BdkFQ2uPmxaAdN6ANoCEdAl9NvCyhSL3V9lChoBkdAZhiu/UONHmgHTegDaAhHQJfaXYJ3PiV1fZQoaAZHQGWJ+8wpON5oB03oA2gIR0CX3CaiKziTdX2UKGgGR0BmD0wg1WKeaAdN6ANoCEdAl91xk3CKrXV9lChoBkdAZ8/zundfs2gHTegDaAhHQJfeev+wTuh1fZQoaAZHQF+c/rB0p3JoB03oA2gIR0CX3wsK9f1IdX2UKGgGR0BjpXnKW9lFaAdN6ANoCEdAmEXlkDp1R3V9lChoBkdAXbVvddmg8WgHTegDaAhHQJhGMYTCcgB1fZQoaAZHQGMLTEaVD8doB03oA2gIR0CYTTI3BHkMdX2UKGgGR0Bmh2kzoEB9aAdN6ANoCEdAmFGHmA9V3nV9lChoBkdAZlGXsPatcWgHTegDaAhHQJhUJ/OMVDd1fZQoaAZHQGNfPuXu3MJoB03oA2gIR0CYWZPz4DcNdX2UKGgGR0Bkw/MdLg4waAdN6ANoCEdAmGNTzyz5XXV9lChoBkdAYqWdp7CzkmgHTegDaAhHQJhl4+W4Vh11fZQoaAZHQGSwrmQr+YNoB03oA2gIR0CYZq9gF5fMdX2UKGgGR0Bj4G0VrRBvaAdN6ANoCEdAmGhVKwpvxnV9lChoBkdAYTehY/3WWmgHTegDaAhHQJhtIHdGiHt1fZQoaAZHQGB1E+HJtBRoB03oA2gIR0CYc3sunMt9dX2UKGgGR0BleF5IH1OCaAdN6ANoCEdAmHVS8an753V9lChoBkdAYeFTNt65XmgHTegDaAhHQJh2nMkhRqJ1fZQoaAZHQGVmJ+c6Nl1oB03oA2gIR0CYd5/UONHZdX2UKGgGR0Bl6/s5XEIgaAdN6ANoCEdAmHgubmU4aXV9lChoBkdAYfs1UlzEJmgHTegDaAhHQJiFq8XenAJ1fZQoaAZHQGYZ0ZeiSJVoB03oA2gIR0CYhei0fHPvdX2UKGgGR0BnASGDcuanaAdN6ANoCEdAmI1i1qnFYXV9lChoBkdAZso0rK/202gHTegDaAhHQJiTMrEtNBZ1fZQoaAZHQGlarFOwgT1oB03oA2gIR0CYlotE5QxfdX2UKGgGR0BkjLpLVWjoaAdN6ANoCEdAmJtpmVZ9u3V9lChoBkdAXqddrwe/6GgHTegDaAhHQJiitM0xdpt1fZQoaAZHQGVNJe3QUpNoB03oA2gIR0CYpT5Lh73PdX2UKGgGR0Bk351xKg7HaAdN6ANoCEdAmKYJhWo3rHV9lChoBkdAYYhC1JDmbWgHTegDaAhHQJinuMVDa5B1fZQoaAZHQGObJ1RtP55oB03oA2gIR0CYrOzND+irdX2UKGgGR0BlDDTpgTh6aAdN6ANoCEdAmLPbTH80lHV9lChoBkdAZohdgOSW7mgHTegDaAhHQJi1kbEP1+R1fZQoaAZHQGD+jUVi4KBoB03oA2gIR0CYtuPEbYK6dX2UKGgGR0Bhe19Ujs2OaAdN6ANoCEdAmLgLYXfqHHV9lChoBkdAZFjtJnQIEGgHTegDaAhHQJi4mbqhUR51fZQoaAZHQGPZdmpVCHBoB03oA2gIR0CZHzU3n6l+dX2UKGgGR0BpOH0f5k9VaAdN6ANoCEdAmR+HpOerdXV9lChoBkdAZf33QD3dsWgHTegDaAhHQJkmie8PFvR1fZQoaAZHQGMwuNPxhDxoB03oA2gIR0CZKx/7BO58dX2UKGgGR0BhNgg3cYZVaAdN6ANoCEdAmS7I6Oo5xXV9lChoBkdAYXTChvitJWgHTegDaAhHQJk1VMdtEXt1fZQoaAZHQGWdfnnuAqdoB03oA2gIR0CZPYSzgMtsdX2UKGgGR0BgmOoNutOmaAdN6ANoCEdAmUBWcOLBK3V9lChoBkdAZ7ZOAy2x6mgHTegDaAhHQJlBQaJhvzh1fZQoaAZHQGHC3umaYu1oB03oA2gIR0CZQx4MF2V3dX2UKGgGR0Bk1QGjbi6yaAdN6ANoCEdAmUi87+1jRXV9lChoBkdAZLvs4T9KmWgHTegDaAhHQJlQdM6BAfN1fZQoaAZHQGQNMLORkmRoB03oA2gIR0CZUo5Z8rqddX2UKGgGR0Bm+zrZ8KG+aAdN6ANoCEdAmVQOFcpsoHV9lChoBkdAY5Oa3I+4b2gHTegDaAhHQJlVPGaQV9F1fZQoaAZHQGb0ZQHiWE9oB03oA2gIR0CZVdr0rbxmdX2UKGgGR0Bl3w0oBq9HaAdN6ANoCEdAmWTwmeDnNnV9lChoBkdAYNcMCLdepmgHTegDaAhHQJllTgbZOBV1fZQoaAZHQGl8d87ZFodoB03oA2gIR0CZbkA80UGndX2UKGgGR0BlAI150KZ2aAdN6ANoCEdAmXJfEGZ/kXV9lChoBkdAZvC2v0RODmgHTegDaAhHQJl0qzSkTHt1fZQoaAZHQGGM4H5aePJoB03oA2gIR0CZeJaJyhi9dX2UKGgGR0Bo0HVTaTOgaAdN6ANoCEdAmX9QCjk+5nV9lChoBkdAY2hFOO8012gHTegDaAhHQJmBo9xIatN1fZQoaAZHQGdpk4ecQRRoB03oA2gIR0CZgmTFERapdX2UKGgGR0Bo+y4jKPn0aAdN6ANoCEdAmYQNjPOY6XV9lChoBkdAaD2guAZsK2gHTegDaAhHQJmJG0QbuMN1fZQoaAZHQGICeTmnwXtoB03oA2gIR0CZj6LkCFK1dX2UKGgGR0BlZI6fapPzaAdN6ANoCEdAmZFUAtFrmHV9lChoBkdAYlj4sVclgWgHTegDaAhHQJmSjs9jgAJ1fZQoaAZHQGY+n9Nvfj1oB03oA2gIR0CZk44h2W6cdX2UKGgGR0BmwJYs/Y8MaAdN6ANoCEdAmZQX/o7muHVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.99,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5326f1eaab94a1401de7f9925b265f655325eda1fe8aa87c9aeaca33af5f89b8
|
3 |
+
size 87978
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94ca0e3506f87a420d5e8ab746a27e5e4db9e75e07c27525647dd1498ca6b4e6
|
3 |
+
size 43634
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (178 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 274.169783, "std_reward": 17.566219732742198, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-25T15:03:32.933229"}
|