jvelja commited on
Commit
9f847d0
1 Parent(s): 5f3e47c

Push model using huggingface_hub.

Browse files
README.md CHANGED
@@ -26,7 +26,7 @@ You can then generate text as follows:
26
  ```python
27
  from transformers import pipeline
28
 
29
- generator = pipeline("text-generation", model="jvelja//tmp/tmp2m1ht0co/jvelja/vllm-gemma2b-stringMatcher-newDataset_0")
30
  outputs = generator("Hello, my llama is cute")
31
  ```
32
 
@@ -36,8 +36,8 @@ If you want to use the model for training or to obtain the outputs from the valu
36
  from transformers import AutoTokenizer
37
  from trl import AutoModelForCausalLMWithValueHead
38
 
39
- tokenizer = AutoTokenizer.from_pretrained("jvelja//tmp/tmp2m1ht0co/jvelja/vllm-gemma2b-stringMatcher-newDataset_0")
40
- model = AutoModelForCausalLMWithValueHead.from_pretrained("jvelja//tmp/tmp2m1ht0co/jvelja/vllm-gemma2b-stringMatcher-newDataset_0")
41
 
42
  inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
43
  outputs = model(**inputs, labels=inputs["input_ids"])
 
26
  ```python
27
  from transformers import pipeline
28
 
29
+ generator = pipeline("text-generation", model="jvelja//tmp/tmp_1fqo36g/jvelja/vllm-gemma2b-stringMatcher-newDataset_0")
30
  outputs = generator("Hello, my llama is cute")
31
  ```
32
 
 
36
  from transformers import AutoTokenizer
37
  from trl import AutoModelForCausalLMWithValueHead
38
 
39
+ tokenizer = AutoTokenizer.from_pretrained("jvelja//tmp/tmp_1fqo36g/jvelja/vllm-gemma2b-stringMatcher-newDataset_0")
40
+ model = AutoModelForCausalLMWithValueHead.from_pretrained("jvelja//tmp/tmp_1fqo36g/jvelja/vllm-gemma2b-stringMatcher-newDataset_0")
41
 
42
  inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
43
  outputs = model(**inputs, labels=inputs["input_ids"])
adapter_config.json CHANGED
@@ -20,8 +20,8 @@
20
  "rank_pattern": {},
21
  "revision": null,
22
  "target_modules": [
23
- "v_proj",
24
- "q_proj"
25
  ],
26
  "task_type": "CAUSAL_LM",
27
  "use_dora": false,
 
20
  "rank_pattern": {},
21
  "revision": null,
22
  "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
  ],
26
  "task_type": "CAUSAL_LM",
27
  "use_dora": false,
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7c486022186a36a078d45dea40dea4bd08720ea5b1ae411ba09dfaa0f2be1047
3
  size 12793376
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:540f9608eb1fa6b598a1cfa81e1a0b1836268c78d04b8ab2eea84392a3d3fcbd
3
  size 12793376
config.json CHANGED
@@ -44,14 +44,14 @@
44
  "tracker_kwargs": {
45
  "wandb": {
46
  "name": "cv_gemma-2-2b-it_to_distilbert-base-uncased_EBS64_Joan",
47
- "notes": "Dataset: cv\n Same Prompt: \n Payload Prefixes: ['Movie Review: This movie was really amazing!', 'Movie Review: This movie was really terrible!']\n Payload Template: Movie Review: This movie was really {payload}!\n Separate Enc/Dec Data: True\n\n Encoder: gemma-2-2b-it (LR: 2e-05)\n Decoder: distilbert-base-uncased (LR: 1e-05)\n Train Loop: v2_dylan\n\n Effective Batch Sizes:\n - Encoder: 64\n - Decoder: 512\n\n Training Iterations:\n - Encoder updates: 100\n - Decoder updates: 400\n - Update Encoder First: False\n\n Temperatures:\n - Decoder Training: 1.0\n - Encoder Training: 1.0\n - Evaluation: 1.0\n\n Encoder Parameters:\n - KL Coefficient: 0.05\n - LoRA: True\n - Quantization: False\n - Output Length: {'min': 42, 'max': 51}\n\n Decoder Parameters:\n - New Classification Head: True\n - Use Probs Reward: False\n - Weight Decay: 0.01\n - Update Parameters: {'head': True, 'body': True}\n\n Training Configuration:\n - Update Encoder: True\n - Update Decoder: True\n - Paraphrase: False\n - Leak Password: False\n - WandB Logging: True\n - Eval Every N: 50\n - Number of Epochs: 100000\n\n Debug:\n - Override Dec Batch: False",
48
  "tags": [
49
  "cv",
50
  "gemma-2-2b-it",
51
  "distilbert-base-uncased",
52
  "v2_dylan",
53
  "enc_lr_2e-05",
54
- "dec_lr_1e-05",
55
  "enc_eff_bs_64",
56
  "dec_eff_bs_512",
57
  "enc_updates_100",
 
44
  "tracker_kwargs": {
45
  "wandb": {
46
  "name": "cv_gemma-2-2b-it_to_distilbert-base-uncased_EBS64_Joan",
47
+ "notes": "Dataset: cv\n Same Prompt: \n Payload Prefixes: ['Movie Review: This movie was really amazing!', 'Movie Review: This movie was really terrible!']\n Payload Template: Movie Review: This movie was really {payload}!\n Separate Enc/Dec Data: True\n\n Encoder: gemma-2-2b-it (LR: 2e-05)\n Decoder: distilbert-base-uncased (LR: 0.0001)\n Train Loop: v2_dylan\n\n Effective Batch Sizes:\n - Encoder: 64\n - Decoder: 512\n\n Training Iterations:\n - Encoder updates: 100\n - Decoder updates: 400\n - Update Encoder First: False\n\n Temperatures:\n - Decoder Training: 1.0\n - Encoder Training: 1.0\n - Evaluation: 1.0\n\n Encoder Parameters:\n - KL Coefficient: 0.05\n - LoRA: True\n - Quantization: False\n - Output Length: {'min': 42, 'max': 51}\n\n Decoder Parameters:\n - New Classification Head: True\n - Use Probs Reward: False\n - Weight Decay: 0.01\n - Update Parameters: {'head': True, 'body': True}\n\n Training Configuration:\n - Update Encoder: True\n - Update Decoder: True\n - Paraphrase: False\n - Leak Password: False\n - WandB Logging: True\n - Eval Every N: 50\n - Number of Epochs: 100000\n\n Debug:\n - Override Dec Batch: False",
48
  "tags": [
49
  "cv",
50
  "gemma-2-2b-it",
51
  "distilbert-base-uncased",
52
  "v2_dylan",
53
  "enc_lr_2e-05",
54
+ "dec_lr_0.0001",
55
  "enc_eff_bs_64",
56
  "dec_eff_bs_512",
57
  "enc_updates_100",
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:69229b3cb870eded86a0ede4c4c5aadc5b91ee552032d2cbc433b86aa75b04b4
3
  size 10748
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d30be897d7413d0488e434baa458390d30b310274126c9b6e2cc94fe2f05292
3
  size 10748