Push model using huggingface_hub.
Browse files- README.md +3 -3
- adapter_config.json +2 -2
- adapter_model.safetensors +1 -1
- config.json +2 -2
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -26,7 +26,7 @@ You can then generate text as follows:
|
|
26 |
```python
|
27 |
from transformers import pipeline
|
28 |
|
29 |
-
generator = pipeline("text-generation", model="jvelja//tmp/
|
30 |
outputs = generator("Hello, my llama is cute")
|
31 |
```
|
32 |
|
@@ -36,8 +36,8 @@ If you want to use the model for training or to obtain the outputs from the valu
|
|
36 |
from transformers import AutoTokenizer
|
37 |
from trl import AutoModelForCausalLMWithValueHead
|
38 |
|
39 |
-
tokenizer = AutoTokenizer.from_pretrained("jvelja//tmp/
|
40 |
-
model = AutoModelForCausalLMWithValueHead.from_pretrained("jvelja//tmp/
|
41 |
|
42 |
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
|
43 |
outputs = model(**inputs, labels=inputs["input_ids"])
|
|
|
26 |
```python
|
27 |
from transformers import pipeline
|
28 |
|
29 |
+
generator = pipeline("text-generation", model="jvelja//tmp/tmpsz1t8pzc/jvelja/vllm-gemma2b-stringMatcher-newDataset_0")
|
30 |
outputs = generator("Hello, my llama is cute")
|
31 |
```
|
32 |
|
|
|
36 |
from transformers import AutoTokenizer
|
37 |
from trl import AutoModelForCausalLMWithValueHead
|
38 |
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained("jvelja//tmp/tmpsz1t8pzc/jvelja/vllm-gemma2b-stringMatcher-newDataset_0")
|
40 |
+
model = AutoModelForCausalLMWithValueHead.from_pretrained("jvelja//tmp/tmpsz1t8pzc/jvelja/vllm-gemma2b-stringMatcher-newDataset_0")
|
41 |
|
42 |
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
|
43 |
outputs = model(**inputs, labels=inputs["input_ids"])
|
adapter_config.json
CHANGED
@@ -20,8 +20,8 @@
|
|
20 |
"rank_pattern": {},
|
21 |
"revision": null,
|
22 |
"target_modules": [
|
23 |
-
"
|
24 |
-
"
|
25 |
],
|
26 |
"task_type": "CAUSAL_LM",
|
27 |
"use_dora": false,
|
|
|
20 |
"rank_pattern": {},
|
21 |
"revision": null,
|
22 |
"target_modules": [
|
23 |
+
"v_proj",
|
24 |
+
"q_proj"
|
25 |
],
|
26 |
"task_type": "CAUSAL_LM",
|
27 |
"use_dora": false,
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 12793376
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:091a63d95c47d4896f0dab289f033fadceb1dff21638fcb65fd782f3a5f442f5
|
3 |
size 12793376
|
config.json
CHANGED
@@ -44,14 +44,14 @@
|
|
44 |
"tracker_kwargs": {
|
45 |
"wandb": {
|
46 |
"name": "cv_gemma-2-2b-it_to_distilbert-base-uncased_EBS64_Joan",
|
47 |
-
"notes": "Dataset: cv\n Same Prompt: \n Payload Prefixes: ['Movie Review: This movie was really amazing!', 'Movie Review: This movie was really terrible!']\n Payload Template: Movie Review: This movie was really {payload}!\n Separate Enc/Dec Data: True\n\n Encoder: gemma-2-2b-it (LR: 2e-05)\n Decoder: distilbert-base-uncased (LR:
|
48 |
"tags": [
|
49 |
"cv",
|
50 |
"gemma-2-2b-it",
|
51 |
"distilbert-base-uncased",
|
52 |
"v2_dylan",
|
53 |
"enc_lr_2e-05",
|
54 |
-
"
|
55 |
"enc_eff_bs_64",
|
56 |
"dec_eff_bs_512",
|
57 |
"enc_updates_100",
|
|
|
44 |
"tracker_kwargs": {
|
45 |
"wandb": {
|
46 |
"name": "cv_gemma-2-2b-it_to_distilbert-base-uncased_EBS64_Joan",
|
47 |
+
"notes": "Dataset: cv\n Same Prompt: \n Payload Prefixes: ['Movie Review: This movie was really amazing!', 'Movie Review: This movie was really terrible!']\n Payload Template: Movie Review: This movie was really {payload}!\n Separate Enc/Dec Data: True\n\n Encoder: gemma-2-2b-it (LR: 2e-05)\n Decoder: distilbert-base-uncased (LR: 1e-05)\n Train Loop: v2_dylan\n\n Effective Batch Sizes:\n - Encoder: 64\n - Decoder: 512\n\n Training Iterations:\n - Encoder updates: 100\n - Decoder updates: 400\n - Update Encoder First: False\n\n Temperatures:\n - Decoder Training: 1.0\n - Encoder Training: 1.0\n - Evaluation: 1.0\n\n Encoder Parameters:\n - KL Coefficient: 0.05\n - LoRA: True\n - Quantization: False\n - Output Length: {'min': 42, 'max': 51}\n\n Decoder Parameters:\n - New Classification Head: True\n - Use Probs Reward: False\n - Weight Decay: 0.01\n - Update Parameters: {'head': True, 'body': True}\n\n Training Configuration:\n - Update Encoder: True\n - Update Decoder: True\n - Paraphrase: False\n - Leak Password: False\n - WandB Logging: True\n - Eval Every N: 50\n - Number of Epochs: 100000\n\n Debug:\n - Override Dec Batch: False",
|
48 |
"tags": [
|
49 |
"cv",
|
50 |
"gemma-2-2b-it",
|
51 |
"distilbert-base-uncased",
|
52 |
"v2_dylan",
|
53 |
"enc_lr_2e-05",
|
54 |
+
"dec_lr_1e-05",
|
55 |
"enc_eff_bs_64",
|
56 |
"dec_eff_bs_512",
|
57 |
"enc_updates_100",
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 10748
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b683989d60948db17a83186ada9495a4ad7923e3c304beb5fba9388e3d638607
|
3 |
size 10748
|