Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- structured-data-classification
|
4 |
+
dataset:
|
5 |
+
- wine-quality
|
6 |
+
library_name: scikit-learn
|
7 |
+
---
|
8 |
+
|
9 |
+
## Wine Quality classification
|
10 |
+
|
11 |
+
### A Simple Example of Scikit-learn Pipeline
|
12 |
+
|
13 |
+
> Inspired by https://towardsdatascience.com/a-simple-example-of-pipeline-in-machine-learning-with-scikit-learn-e726ffbb6976
|
14 |
+
|
15 |
+
|
16 |
+
### How to use
|
17 |
+
|
18 |
+
```python
|
19 |
+
from huggingface_hub import hf_hub_url, cached_download
|
20 |
+
import joblib
|
21 |
+
import pandas as pd
|
22 |
+
|
23 |
+
REPO_ID = "julien-c/wine-quality"
|
24 |
+
FILENAME = "sklearn_model.joblib"
|
25 |
+
|
26 |
+
|
27 |
+
model = joblib.load(cached_download(
|
28 |
+
hf_hub_url(REPO_ID, FILENAME)
|
29 |
+
))
|
30 |
+
|
31 |
+
# model is a `sklearn.pipeline.Pipeline`
|
32 |
+
|
33 |
+
data_file = cached_download(
|
34 |
+
hf_hub_url(REPO_ID, "winequality-red.csv")
|
35 |
+
)
|
36 |
+
winedf = pd.read_csv(data_file, sep=";")
|
37 |
+
|
38 |
+
|
39 |
+
X = winedf.drop(["quality"], axis=1)
|
40 |
+
Y = winedf["quality"]
|
41 |
+
|
42 |
+
|
43 |
+
labels = model.predict(X[:3])
|
44 |
+
```
|
45 |
+
|
46 |
+
^^ get your prediction
|
47 |
+
|
48 |
+
#### Eval
|
49 |
+
|
50 |
+
```python
|
51 |
+
model.score(X, Y)
|
52 |
+
# 0.6616635397123202
|
53 |
+
```
|
54 |
+
|
55 |
+
### 🍷 Disclaimer
|
56 |
+
|
57 |
+
No red wine was drunk (unfortunately) while training this model 🍷
|
58 |
+
|