julien-c HF staff commited on
Commit
00a47f9
1 Parent(s): 1a7e772

Migrate model card from transformers-repo

Browse files

Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/julien-c/EsperBERTo-small-pos/README.md

Files changed (1) hide show
  1. README.md +42 -0
README.md ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: eo
3
+ thumbnail: https://huggingface.co/blog/assets/01_how-to-train/EsperBERTo-thumbnail-v2.png
4
+ widget:
5
+ - text: "Mi estas viro kej estas tago varma."
6
+ ---
7
+
8
+ # EsperBERTo: RoBERTa-like Language model trained on Esperanto
9
+
10
+ **Companion model to blog post https://huggingface.co/blog/how-to-train** 🔥
11
+
12
+ ## Training Details
13
+
14
+ - current checkpoint: 566000
15
+ - machine name: `galinette`
16
+
17
+
18
+ ![](https://huggingface.co/blog/assets/01_how-to-train/EsperBERTo-thumbnail-v2.png)
19
+
20
+ ## Example pipeline
21
+
22
+ ```python
23
+ from transformers import TokenClassificationPipeline, pipeline
24
+
25
+
26
+ MODEL_PATH = "./models/EsperBERTo-small-pos/"
27
+
28
+ nlp = pipeline(
29
+ "ner",
30
+ model=MODEL_PATH,
31
+ tokenizer=MODEL_PATH,
32
+ )
33
+ # or instantiate a TokenClassificationPipeline directly.
34
+
35
+ nlp("Mi estas viro kej estas tago varma.")
36
+
37
+ # {'entity': 'PRON', 'score': 0.9979867339134216, 'word': ' Mi'}
38
+ # {'entity': 'VERB', 'score': 0.9683094620704651, 'word': ' estas'}
39
+ # {'entity': 'VERB', 'score': 0.9797462821006775, 'word': ' estas'}
40
+ # {'entity': 'NOUN', 'score': 0.8509314060211182, 'word': ' tago'}
41
+ # {'entity': 'ADJ', 'score': 0.9996201395988464, 'word': ' varma'}
42
+ ```