julian-schelb commited on
Commit
c909430
1 Parent(s): eeb5506

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -20
README.md CHANGED
@@ -84,34 +84,33 @@ The model was fine-tuned on 375.100 sentences in the training set, with a valida
84
  This model achieves the following results (meassured using the test split of the [wikiann](https://huggingface.co/datasets/wikiann) dataset):
85
 
86
  ```python
87
- {'LOC': {'f1': 0.9310524680196053,
88
- 'number': 545516,
89
- 'precision': 0.9230957726278464,
90
- 'recall': 0.9391475227124411},
91
- 'ORG': {'f1': 0.884603763901478,
92
- 'number': 363324,
93
- 'precision': 0.8868243944134171,
94
- 'recall': 0.8823942266406843},
95
- 'PER': {'f1': 0.939167449173159,
96
- 'number': 367750,
97
- 'precision': 0.934642687866253,
98
- 'recall': 0.9437362338545208},
99
- 'overall_accuracy': 0.9588396024156357,
100
- 'overall_f1': 0.9202625613733114,
101
- 'overall_precision': 0.9162434124141294,
102
- 'overall_recall': 0.9243171260937341}
103
-
104
  ```
105
 
106
  ## Usage
107
 
108
- You can load this model by using the AutoTokenize and AutoModelForTokenClassification class:
109
 
110
  ```python
111
  from transformers import AutoTokenizer, AutoModelForTokenClassification
112
 
113
- tokenizer = AutoTokenizer.from_pretrained("julian-schelb/roberta-ner-multilingual-wikiann/", add_prefix_space=True)
114
- model = AutoModelForTokenClassification.from_pretrained("julian-schelb/roberta-ner-multilingual-wikiann/")
115
 
116
  text = "In December 1903 in France the Royal Swedish Academy of Sciences awarded Pierre Curie, Marie Curie, and Henri Becquerel the Nobel Prize in Physics."
117
 
 
84
  This model achieves the following results (meassured using the test split of the [wikiann](https://huggingface.co/datasets/wikiann) dataset):
85
 
86
  ```python
87
+ {'LOC': {'f1': 0.8994491397524903,
88
+ 'number': 184430,
89
+ 'precision': 0.8941572985543279,
90
+ 'recall': 0.9048039906739684},
91
+ 'ORG': {'f1': 0.829114679375883,
92
+ 'number': 129760,
93
+ 'precision': 0.8283525257886599,
94
+ 'recall': 0.8298782367447596},
95
+ 'PER': {'f1': 0.9115096398413828,
96
+ 'number': 130471,
97
+ 'precision': 0.9043545174723882,
98
+ 'recall': 0.9187788857293958},
99
+ 'overall_accuracy': 0.9398182274831388,
100
+ 'overall_f1': 0.8825581369330908,
101
+ 'overall_precision': 0.8781215422873389,
102
+ 'overall_recall': 0.8870397898623895}
 
103
  ```
104
 
105
  ## Usage
106
 
107
+ You can load this model by using the AutoTokenize and AutoModelForTokenClassification classes:
108
 
109
  ```python
110
  from transformers import AutoTokenizer, AutoModelForTokenClassification
111
 
112
+ tokenizer = AutoTokenizer.from_pretrained("julian-schelb/roberta-ner-multilingual/", add_prefix_space=True)
113
+ model = AutoModelForTokenClassification.from_pretrained("julian-schelb/roberta-ner-multilingual/")
114
 
115
  text = "In December 1903 in France the Royal Swedish Academy of Sciences awarded Pierre Curie, Marie Curie, and Henri Becquerel the Nobel Prize in Physics."
116