julian-schelb
commited on
Commit
•
c909430
1
Parent(s):
eeb5506
Update README.md
Browse files
README.md
CHANGED
@@ -84,34 +84,33 @@ The model was fine-tuned on 375.100 sentences in the training set, with a valida
|
|
84 |
This model achieves the following results (meassured using the test split of the [wikiann](https://huggingface.co/datasets/wikiann) dataset):
|
85 |
|
86 |
```python
|
87 |
-
{'LOC': {'f1': 0.
|
88 |
-
'number':
|
89 |
-
'precision': 0.
|
90 |
-
'recall': 0.
|
91 |
-
'ORG': {'f1': 0.
|
92 |
-
'number':
|
93 |
-
'precision': 0.
|
94 |
-
'recall': 0.
|
95 |
-
'PER': {'f1': 0.
|
96 |
-
'number':
|
97 |
-
'precision': 0.
|
98 |
-
'recall': 0.
|
99 |
-
'overall_accuracy': 0.
|
100 |
-
'overall_f1': 0.
|
101 |
-
'overall_precision': 0.
|
102 |
-
'overall_recall': 0.
|
103 |
-
|
104 |
```
|
105 |
|
106 |
## Usage
|
107 |
|
108 |
-
You can load this model by using the AutoTokenize and AutoModelForTokenClassification
|
109 |
|
110 |
```python
|
111 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
112 |
|
113 |
-
tokenizer = AutoTokenizer.from_pretrained("julian-schelb/roberta-ner-multilingual
|
114 |
-
model = AutoModelForTokenClassification.from_pretrained("julian-schelb/roberta-ner-multilingual
|
115 |
|
116 |
text = "In December 1903 in France the Royal Swedish Academy of Sciences awarded Pierre Curie, Marie Curie, and Henri Becquerel the Nobel Prize in Physics."
|
117 |
|
|
|
84 |
This model achieves the following results (meassured using the test split of the [wikiann](https://huggingface.co/datasets/wikiann) dataset):
|
85 |
|
86 |
```python
|
87 |
+
{'LOC': {'f1': 0.8994491397524903,
|
88 |
+
'number': 184430,
|
89 |
+
'precision': 0.8941572985543279,
|
90 |
+
'recall': 0.9048039906739684},
|
91 |
+
'ORG': {'f1': 0.829114679375883,
|
92 |
+
'number': 129760,
|
93 |
+
'precision': 0.8283525257886599,
|
94 |
+
'recall': 0.8298782367447596},
|
95 |
+
'PER': {'f1': 0.9115096398413828,
|
96 |
+
'number': 130471,
|
97 |
+
'precision': 0.9043545174723882,
|
98 |
+
'recall': 0.9187788857293958},
|
99 |
+
'overall_accuracy': 0.9398182274831388,
|
100 |
+
'overall_f1': 0.8825581369330908,
|
101 |
+
'overall_precision': 0.8781215422873389,
|
102 |
+
'overall_recall': 0.8870397898623895}
|
|
|
103 |
```
|
104 |
|
105 |
## Usage
|
106 |
|
107 |
+
You can load this model by using the AutoTokenize and AutoModelForTokenClassification classes:
|
108 |
|
109 |
```python
|
110 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
111 |
|
112 |
+
tokenizer = AutoTokenizer.from_pretrained("julian-schelb/roberta-ner-multilingual/", add_prefix_space=True)
|
113 |
+
model = AutoModelForTokenClassification.from_pretrained("julian-schelb/roberta-ner-multilingual/")
|
114 |
|
115 |
text = "In December 1903 in France the Royal Swedish Academy of Sciences awarded Pierre Curie, Marie Curie, and Henri Becquerel the Nobel Prize in Physics."
|
116 |
|