Upload folder using huggingface_hub
Browse files- README.md +116 -0
- config.json +30 -0
- mergekit_moe_config.yml +68 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +1 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
README.md
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- moe
|
5 |
+
- frankenmoe
|
6 |
+
- merge
|
7 |
+
- mergekit
|
8 |
+
- lazymergekit
|
9 |
+
- Gille/StrangeMerges_32-7B-slerp
|
10 |
+
- mlabonne/AlphaMonarch-7B
|
11 |
+
base_model:
|
12 |
+
- Gille/StrangeMerges_32-7B-slerp
|
13 |
+
- mlabonne/AlphaMonarch-7B
|
14 |
+
---
|
15 |
+
|
16 |
+
# MixtureofMerges-MoE-2x7b-v7
|
17 |
+
|
18 |
+
MixtureofMerges-MoE-2x7b-v7 is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
|
19 |
+
* [Gille/StrangeMerges_32-7B-slerp](https://huggingface.co/Gille/StrangeMerges_32-7B-slerp)
|
20 |
+
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
|
21 |
+
|
22 |
+
## 🧩 Configuration
|
23 |
+
|
24 |
+
```yaml
|
25 |
+
base_model: Gille/StrangeMerges_32-7B-slerp
|
26 |
+
gate_mode: hidden
|
27 |
+
dtype: bfloat16
|
28 |
+
experts:
|
29 |
+
- source_model: Gille/StrangeMerges_32-7B-slerp
|
30 |
+
positive_prompts:
|
31 |
+
- "Answer this question from the ARC (Argument Reasoning Comprehension)."
|
32 |
+
- "Use common sense and logical reasoning skills."
|
33 |
+
- "What assumptions does this argument rely on?"
|
34 |
+
- "Are these assumptions valid? Explain."
|
35 |
+
- "Analyze the logical structure of this argument. Identify the premises, conclusion, and any assumptions made"
|
36 |
+
- "Identify any potential counterarguments to this position. How might someone challenge the reasoning presented?"
|
37 |
+
- "Could this be explained in a different way? Provide an alternative explanation."
|
38 |
+
- "Identify any weaknesses in this argument."
|
39 |
+
- "Does this argument contain any logical fallacies? If so, which ones?"
|
40 |
+
- "Generate a few possible continuations to this scenario."
|
41 |
+
- "Demonstrate understanding of everyday commonsense in your response."
|
42 |
+
- "Use contextual clues to determine the most likely outcome."
|
43 |
+
- "Continue this scenario, but make the writing style sound archaic and overly formal."
|
44 |
+
- "This narrative is predictable. Can you introduce an unexpected yet plausible twist?"
|
45 |
+
- "The character is angry. Continue this scenario showcasing a furious outburst."
|
46 |
+
negative_prompts:
|
47 |
+
- "misses key evidence"
|
48 |
+
- "overly general"
|
49 |
+
- "commits the fallacy of hasty generalization"
|
50 |
+
- "focuses on irrelevant details"
|
51 |
+
- "assumes information not provided"
|
52 |
+
- "relies on stereotypes"
|
53 |
+
- "repetitive phrases"
|
54 |
+
- "engages in circular reasoning"
|
55 |
+
- "overuse of the same words"
|
56 |
+
- "contradicts earlier statements - breaks the internal logic of the scenario"
|
57 |
+
- "out of character dialogue"
|
58 |
+
- "awkward phrasing - sounds unnatural"
|
59 |
+
- "doesn't match the given genre"
|
60 |
+
- source_model: mlabonne/AlphaMonarch-7B
|
61 |
+
positive_prompts:
|
62 |
+
- "Answer this question, demonstrating commonsense understanding and using any relevant general knowledge you may have."
|
63 |
+
- "Provide a concise summary of this passage, then explain why the highlighted section is essential to the main idea."
|
64 |
+
- "Read these two brief articles presenting different viewpoints on the same topic. List their key arguments and highlight where they disagree."
|
65 |
+
- "Paraphrase this statement, changing the emotional tone but keeping the core meaning intact. Example: Rephrase a worried statement in a humorous way"
|
66 |
+
- "Create a short analogy that helps illustrate the main concept of this article."
|
67 |
+
- "Explain the concept of physics to a high school student. Use analogies and examples to clarify the main ideas."
|
68 |
+
- "Calculate the answer to this math problem"
|
69 |
+
- "My mathematical capabilities are strong, allowing me to handle complex mathematical queries"
|
70 |
+
- "solve for"
|
71 |
+
- "Analyze the given data and identify any patterns or trends. What conclusions can be drawn from this information?"
|
72 |
+
- "A store sells apples at $0.50 each. If Emily buys 12 apples, how much does she need to pay?"
|
73 |
+
- "Isolate x in the following equation: 2x + 5 = 17"
|
74 |
+
- "Solve this equation and show your working."
|
75 |
+
- "Explain why you used this formula to solve the problem."
|
76 |
+
- "Attempt to divide this number by zero. Explain why this cannot be done."
|
77 |
+
negative_prompts:
|
78 |
+
- "sounds too basic"
|
79 |
+
- "understated"
|
80 |
+
- "dismisses important details"
|
81 |
+
- "avoids the question's nuance"
|
82 |
+
- "skips essential steps in the solution"
|
83 |
+
- "takes this statement too literally"
|
84 |
+
- "incorrect"
|
85 |
+
- "inaccurate"
|
86 |
+
- "assumed without proof"
|
87 |
+
- "uses jargon without explanation"
|
88 |
+
- "rushed calculation"
|
89 |
+
- "confuses mathematical concepts"
|
90 |
+
- "draws illogical conclusions"
|
91 |
+
- "circular reasoning"
|
92 |
+
```
|
93 |
+
|
94 |
+
## 💻 Usage
|
95 |
+
|
96 |
+
```python
|
97 |
+
!pip install -qU transformers bitsandbytes accelerate
|
98 |
+
|
99 |
+
from transformers import AutoTokenizer
|
100 |
+
import transformers
|
101 |
+
import torch
|
102 |
+
|
103 |
+
model = "jsfs11/MixtureofMerges-MoE-2x7b-v7"
|
104 |
+
|
105 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
106 |
+
pipeline = transformers.pipeline(
|
107 |
+
"text-generation",
|
108 |
+
model=model,
|
109 |
+
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
|
110 |
+
)
|
111 |
+
|
112 |
+
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
|
113 |
+
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
114 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
115 |
+
print(outputs[0]["generated_text"])
|
116 |
+
```
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Gille/StrangeMerges_32-7B-slerp",
|
3 |
+
"architectures": [
|
4 |
+
"MixtralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mixtral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_experts_per_tok": 2,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"num_local_experts": 2,
|
20 |
+
"output_router_logits": false,
|
21 |
+
"rms_norm_eps": 1e-05,
|
22 |
+
"rope_theta": 10000.0,
|
23 |
+
"router_aux_loss_coef": 0.001,
|
24 |
+
"sliding_window": null,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.39.2",
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 32000
|
30 |
+
}
|
mergekit_moe_config.yml
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
base_model: Gille/StrangeMerges_32-7B-slerp
|
3 |
+
gate_mode: hidden
|
4 |
+
dtype: bfloat16
|
5 |
+
experts:
|
6 |
+
- source_model: Gille/StrangeMerges_32-7B-slerp
|
7 |
+
positive_prompts:
|
8 |
+
- "Answer this question from the ARC (Argument Reasoning Comprehension)."
|
9 |
+
- "Use common sense and logical reasoning skills."
|
10 |
+
- "What assumptions does this argument rely on?"
|
11 |
+
- "Are these assumptions valid? Explain."
|
12 |
+
- "Analyze the logical structure of this argument. Identify the premises, conclusion, and any assumptions made"
|
13 |
+
- "Identify any potential counterarguments to this position. How might someone challenge the reasoning presented?"
|
14 |
+
- "Could this be explained in a different way? Provide an alternative explanation."
|
15 |
+
- "Identify any weaknesses in this argument."
|
16 |
+
- "Does this argument contain any logical fallacies? If so, which ones?"
|
17 |
+
- "Generate a few possible continuations to this scenario."
|
18 |
+
- "Demonstrate understanding of everyday commonsense in your response."
|
19 |
+
- "Use contextual clues to determine the most likely outcome."
|
20 |
+
- "Continue this scenario, but make the writing style sound archaic and overly formal."
|
21 |
+
- "This narrative is predictable. Can you introduce an unexpected yet plausible twist?"
|
22 |
+
- "The character is angry. Continue this scenario showcasing a furious outburst."
|
23 |
+
negative_prompts:
|
24 |
+
- "misses key evidence"
|
25 |
+
- "overly general"
|
26 |
+
- "commits the fallacy of hasty generalization"
|
27 |
+
- "focuses on irrelevant details"
|
28 |
+
- "assumes information not provided"
|
29 |
+
- "relies on stereotypes"
|
30 |
+
- "repetitive phrases"
|
31 |
+
- "engages in circular reasoning"
|
32 |
+
- "overuse of the same words"
|
33 |
+
- "contradicts earlier statements - breaks the internal logic of the scenario"
|
34 |
+
- "out of character dialogue"
|
35 |
+
- "awkward phrasing - sounds unnatural"
|
36 |
+
- "doesn't match the given genre"
|
37 |
+
- source_model: mlabonne/AlphaMonarch-7B
|
38 |
+
positive_prompts:
|
39 |
+
- "Answer this question, demonstrating commonsense understanding and using any relevant general knowledge you may have."
|
40 |
+
- "Provide a concise summary of this passage, then explain why the highlighted section is essential to the main idea."
|
41 |
+
- "Read these two brief articles presenting different viewpoints on the same topic. List their key arguments and highlight where they disagree."
|
42 |
+
- "Paraphrase this statement, changing the emotional tone but keeping the core meaning intact. Example: Rephrase a worried statement in a humorous way"
|
43 |
+
- "Create a short analogy that helps illustrate the main concept of this article."
|
44 |
+
- "Explain the concept of physics to a high school student. Use analogies and examples to clarify the main ideas."
|
45 |
+
- "Calculate the answer to this math problem"
|
46 |
+
- "My mathematical capabilities are strong, allowing me to handle complex mathematical queries"
|
47 |
+
- "solve for"
|
48 |
+
- "Analyze the given data and identify any patterns or trends. What conclusions can be drawn from this information?"
|
49 |
+
- "A store sells apples at $0.50 each. If Emily buys 12 apples, how much does she need to pay?"
|
50 |
+
- "Isolate x in the following equation: 2x + 5 = 17"
|
51 |
+
- "Solve this equation and show your working."
|
52 |
+
- "Explain why you used this formula to solve the problem."
|
53 |
+
- "Attempt to divide this number by zero. Explain why this cannot be done."
|
54 |
+
negative_prompts:
|
55 |
+
- "sounds too basic"
|
56 |
+
- "understated"
|
57 |
+
- "dismisses important details"
|
58 |
+
- "avoids the question's nuance"
|
59 |
+
- "skips essential steps in the solution"
|
60 |
+
- "takes this statement too literally"
|
61 |
+
- "incorrect"
|
62 |
+
- "inaccurate"
|
63 |
+
- "assumed without proof"
|
64 |
+
- "uses jargon without explanation"
|
65 |
+
- "rushed calculation"
|
66 |
+
- "confuses mathematical concepts"
|
67 |
+
- "draws illogical conclusions"
|
68 |
+
- "circular reasoning"
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2209de631aa3ad8430dc737b72b71f0b1186c002b35c256a2585e0dadba25c18
|
3 |
+
size 9919813704
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78b35aa7e3a8a27a2c563b3199027feea30e7f5dbdd913d16b9ee9d585f0a2c7
|
3 |
+
size 9982454736
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f21edc624e1fb09172cb452818edd997ebb8d5dba99093cd197babc56ab592af
|
3 |
+
size 5856061008
|
model.safetensors.index.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"metadata": {"mergekit_version": "0.0.4"}, "weight_map": {"model.embed_tokens.weight": "model-00001-of-00003.safetensors", "model.norm.weight": "model-00001-of-00003.safetensors", "lm_head.weight": "model-00001-of-00003.safetensors", "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.11.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.12.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.13.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.14.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.15.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.16.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.17.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.18.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.19.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.20.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.21.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.22.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.23.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.24.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.25.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.26.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.27.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.28.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.29.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.30.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.31.input_layernorm.weight": "model-00001-of-00003.safetensors", "model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.22.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.22.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.23.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.23.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.24.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.24.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.25.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.25.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.26.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.26.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.27.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.27.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.28.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.28.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.29.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.29.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.30.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.30.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.31.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00003.safetensors", "model.layers.31.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00003.safetensors", "model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00003.safetensors", "model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00003.safetensors", "model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.22.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.22.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.23.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.23.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.24.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.24.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.25.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.25.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.26.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.26.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.27.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.27.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.28.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.28.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.29.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.29.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.30.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.30.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.31.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00003.safetensors", "model.layers.31.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00003.safetensors", "model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00003.safetensors", "model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00003.safetensors", "model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.22.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.22.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.23.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.23.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.24.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.24.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.25.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.25.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.26.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.26.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.27.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.27.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.28.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.28.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.29.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.29.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.30.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.30.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.31.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00003.safetensors", "model.layers.31.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00003.safetensors", "model.layers.0.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.1.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.2.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.3.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.4.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.5.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors", "model.layers.0.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.1.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.2.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.3.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.4.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors", "model.layers.0.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.1.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.2.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.3.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.4.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.7.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors", "model.layers.0.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.1.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.2.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.3.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.4.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.7.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors", "model.layers.0.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.1.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.2.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.3.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.4.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.7.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors", "model.layers.0.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.1.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.2.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.3.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.4.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.5.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.6.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.7.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.8.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.9.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.10.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.11.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.12.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.13.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.14.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.15.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.16.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.17.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.18.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.19.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.20.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.21.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.22.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.23.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.24.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.25.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.26.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.27.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.28.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.29.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.30.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors", "model.layers.31.block_sparse_moe.gate.weight": "model-00003-of-00003.safetensors"}}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": true,
|
35 |
+
"model_max_length": 32768,
|
36 |
+
"pad_token": "<s>",
|
37 |
+
"padding_side": "left",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|