Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/jplu/tf-xlm-r-ner-40-lang/README.md
README.md
ADDED
@@ -0,0 +1,602 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: multilingual
|
3 |
+
---
|
4 |
+
|
5 |
+
# XLM-R + NER
|
6 |
+
|
7 |
+
This model is a fine-tuned [XLM-Roberta-base](https://arxiv.org/abs/1911.02116) over the 40 languages proposed in [XTREME](https://github.com/google-research/xtreme) from [Wikiann](https://aclweb.org/anthology/P17-1178). This is still an on-going work and the results will be updated everytime an improvement is reached.
|
8 |
+
|
9 |
+
The covered labels are:
|
10 |
+
```
|
11 |
+
LOC
|
12 |
+
ORG
|
13 |
+
PER
|
14 |
+
O
|
15 |
+
```
|
16 |
+
|
17 |
+
## Metrics on evaluation set:
|
18 |
+
### Average over the 40 languages
|
19 |
+
Number of documents: 262300
|
20 |
+
```
|
21 |
+
precision recall f1-score support
|
22 |
+
|
23 |
+
ORG 0.81 0.81 0.81 102452
|
24 |
+
PER 0.90 0.91 0.91 108978
|
25 |
+
LOC 0.86 0.89 0.87 121868
|
26 |
+
|
27 |
+
micro avg 0.86 0.87 0.87 333298
|
28 |
+
macro avg 0.86 0.87 0.87 333298
|
29 |
+
```
|
30 |
+
|
31 |
+
### Afrikaans
|
32 |
+
Number of documents: 1000
|
33 |
+
```
|
34 |
+
precision recall f1-score support
|
35 |
+
|
36 |
+
ORG 0.89 0.88 0.88 582
|
37 |
+
PER 0.89 0.97 0.93 369
|
38 |
+
LOC 0.84 0.90 0.86 518
|
39 |
+
|
40 |
+
micro avg 0.87 0.91 0.89 1469
|
41 |
+
macro avg 0.87 0.91 0.89 1469
|
42 |
+
```
|
43 |
+
|
44 |
+
### Arabic
|
45 |
+
Number of documents: 10000
|
46 |
+
```
|
47 |
+
precision recall f1-score support
|
48 |
+
|
49 |
+
ORG 0.83 0.84 0.84 3507
|
50 |
+
PER 0.90 0.91 0.91 3643
|
51 |
+
LOC 0.88 0.89 0.88 3604
|
52 |
+
|
53 |
+
micro avg 0.87 0.88 0.88 10754
|
54 |
+
macro avg 0.87 0.88 0.88 10754
|
55 |
+
```
|
56 |
+
|
57 |
+
### Basque
|
58 |
+
Number of documents: 10000
|
59 |
+
```
|
60 |
+
precision recall f1-score support
|
61 |
+
|
62 |
+
LOC 0.88 0.93 0.91 5228
|
63 |
+
ORG 0.86 0.81 0.83 3654
|
64 |
+
PER 0.91 0.91 0.91 4072
|
65 |
+
|
66 |
+
micro avg 0.89 0.89 0.89 12954
|
67 |
+
macro avg 0.89 0.89 0.89 12954
|
68 |
+
```
|
69 |
+
|
70 |
+
### Bengali
|
71 |
+
Number of documents: 1000
|
72 |
+
```
|
73 |
+
precision recall f1-score support
|
74 |
+
|
75 |
+
ORG 0.86 0.89 0.87 325
|
76 |
+
LOC 0.91 0.91 0.91 406
|
77 |
+
PER 0.96 0.95 0.95 364
|
78 |
+
|
79 |
+
micro avg 0.91 0.92 0.91 1095
|
80 |
+
macro avg 0.91 0.92 0.91 1095
|
81 |
+
```
|
82 |
+
|
83 |
+
### Bulgarian
|
84 |
+
Number of documents: 1000
|
85 |
+
```
|
86 |
+
precision recall f1-score support
|
87 |
+
|
88 |
+
ORG 0.86 0.83 0.84 3661
|
89 |
+
PER 0.92 0.95 0.94 4006
|
90 |
+
LOC 0.92 0.95 0.94 6449
|
91 |
+
|
92 |
+
micro avg 0.91 0.92 0.91 14116
|
93 |
+
macro avg 0.91 0.92 0.91 14116
|
94 |
+
```
|
95 |
+
|
96 |
+
### Burmese
|
97 |
+
Number of documents: 100
|
98 |
+
```
|
99 |
+
precision recall f1-score support
|
100 |
+
|
101 |
+
LOC 0.60 0.86 0.71 37
|
102 |
+
ORG 0.68 0.63 0.66 30
|
103 |
+
PER 0.44 0.44 0.44 36
|
104 |
+
|
105 |
+
micro avg 0.57 0.65 0.61 103
|
106 |
+
macro avg 0.57 0.65 0.60 103
|
107 |
+
```
|
108 |
+
|
109 |
+
### Chinese
|
110 |
+
Number of documents: 10000
|
111 |
+
```
|
112 |
+
precision recall f1-score support
|
113 |
+
|
114 |
+
ORG 0.70 0.69 0.70 4022
|
115 |
+
LOC 0.76 0.81 0.78 3830
|
116 |
+
PER 0.84 0.84 0.84 3706
|
117 |
+
|
118 |
+
micro avg 0.76 0.78 0.77 11558
|
119 |
+
macro avg 0.76 0.78 0.77 11558
|
120 |
+
```
|
121 |
+
|
122 |
+
### Dutch
|
123 |
+
Number of documents: 10000
|
124 |
+
```
|
125 |
+
precision recall f1-score support
|
126 |
+
|
127 |
+
ORG 0.87 0.87 0.87 3930
|
128 |
+
PER 0.95 0.95 0.95 4377
|
129 |
+
LOC 0.91 0.92 0.91 4813
|
130 |
+
|
131 |
+
micro avg 0.91 0.92 0.91 13120
|
132 |
+
macro avg 0.91 0.92 0.91 13120
|
133 |
+
```
|
134 |
+
|
135 |
+
### English
|
136 |
+
Number of documents: 10000
|
137 |
+
```
|
138 |
+
precision recall f1-score support
|
139 |
+
|
140 |
+
LOC 0.83 0.84 0.84 4781
|
141 |
+
PER 0.89 0.90 0.89 4559
|
142 |
+
ORG 0.75 0.75 0.75 4633
|
143 |
+
|
144 |
+
micro avg 0.82 0.83 0.83 13973
|
145 |
+
macro avg 0.82 0.83 0.83 13973
|
146 |
+
```
|
147 |
+
|
148 |
+
### Estonian
|
149 |
+
Number of documents: 10000
|
150 |
+
```
|
151 |
+
precision recall f1-score support
|
152 |
+
|
153 |
+
LOC 0.89 0.92 0.91 5654
|
154 |
+
ORG 0.85 0.85 0.85 3878
|
155 |
+
PER 0.94 0.94 0.94 4026
|
156 |
+
|
157 |
+
micro avg 0.90 0.91 0.90 13558
|
158 |
+
macro avg 0.90 0.91 0.90 13558
|
159 |
+
```
|
160 |
+
|
161 |
+
### Finnish
|
162 |
+
Number of documents: 10000
|
163 |
+
```
|
164 |
+
precision recall f1-score support
|
165 |
+
|
166 |
+
ORG 0.84 0.83 0.84 4104
|
167 |
+
LOC 0.88 0.90 0.89 5307
|
168 |
+
PER 0.95 0.94 0.94 4519
|
169 |
+
|
170 |
+
micro avg 0.89 0.89 0.89 13930
|
171 |
+
macro avg 0.89 0.89 0.89 13930
|
172 |
+
```
|
173 |
+
|
174 |
+
### French
|
175 |
+
Number of documents: 10000
|
176 |
+
```
|
177 |
+
precision recall f1-score support
|
178 |
+
|
179 |
+
LOC 0.90 0.89 0.89 4808
|
180 |
+
ORG 0.84 0.87 0.85 3876
|
181 |
+
PER 0.94 0.93 0.94 4249
|
182 |
+
|
183 |
+
micro avg 0.89 0.90 0.90 12933
|
184 |
+
macro avg 0.89 0.90 0.90 12933
|
185 |
+
```
|
186 |
+
|
187 |
+
### Georgian
|
188 |
+
Number of documents: 10000
|
189 |
+
```
|
190 |
+
precision recall f1-score support
|
191 |
+
|
192 |
+
PER 0.90 0.91 0.90 3964
|
193 |
+
ORG 0.83 0.77 0.80 3757
|
194 |
+
LOC 0.82 0.88 0.85 4894
|
195 |
+
|
196 |
+
micro avg 0.84 0.86 0.85 12615
|
197 |
+
macro avg 0.84 0.86 0.85 12615
|
198 |
+
```
|
199 |
+
|
200 |
+
### German
|
201 |
+
Number of documents: 10000
|
202 |
+
```
|
203 |
+
precision recall f1-score support
|
204 |
+
|
205 |
+
LOC 0.85 0.90 0.87 4939
|
206 |
+
PER 0.94 0.91 0.92 4452
|
207 |
+
ORG 0.79 0.78 0.79 4247
|
208 |
+
|
209 |
+
micro avg 0.86 0.86 0.86 13638
|
210 |
+
macro avg 0.86 0.86 0.86 13638
|
211 |
+
```
|
212 |
+
|
213 |
+
### Greek
|
214 |
+
Number of documents: 10000
|
215 |
+
```
|
216 |
+
precision recall f1-score support
|
217 |
+
|
218 |
+
ORG 0.86 0.85 0.85 3771
|
219 |
+
LOC 0.88 0.91 0.90 4436
|
220 |
+
PER 0.91 0.93 0.92 3894
|
221 |
+
|
222 |
+
micro avg 0.88 0.90 0.89 12101
|
223 |
+
macro avg 0.88 0.90 0.89 12101
|
224 |
+
```
|
225 |
+
|
226 |
+
### Hebrew
|
227 |
+
Number of documents: 10000
|
228 |
+
```
|
229 |
+
precision recall f1-score support
|
230 |
+
|
231 |
+
PER 0.87 0.88 0.87 4206
|
232 |
+
ORG 0.76 0.75 0.76 4190
|
233 |
+
LOC 0.85 0.85 0.85 4538
|
234 |
+
|
235 |
+
micro avg 0.83 0.83 0.83 12934
|
236 |
+
macro avg 0.82 0.83 0.83 12934
|
237 |
+
```
|
238 |
+
|
239 |
+
### Hindi
|
240 |
+
Number of documents: 1000
|
241 |
+
```
|
242 |
+
precision recall f1-score support
|
243 |
+
|
244 |
+
ORG 0.78 0.81 0.79 362
|
245 |
+
LOC 0.83 0.85 0.84 422
|
246 |
+
PER 0.90 0.95 0.92 427
|
247 |
+
|
248 |
+
micro avg 0.84 0.87 0.85 1211
|
249 |
+
macro avg 0.84 0.87 0.85 1211
|
250 |
+
```
|
251 |
+
|
252 |
+
### Hungarian
|
253 |
+
Number of documents: 10000
|
254 |
+
```
|
255 |
+
precision recall f1-score support
|
256 |
+
|
257 |
+
PER 0.95 0.95 0.95 4347
|
258 |
+
ORG 0.87 0.88 0.87 3988
|
259 |
+
LOC 0.90 0.92 0.91 5544
|
260 |
+
|
261 |
+
micro avg 0.91 0.92 0.91 13879
|
262 |
+
macro avg 0.91 0.92 0.91 13879
|
263 |
+
```
|
264 |
+
|
265 |
+
### Indonesian
|
266 |
+
Number of documents: 10000
|
267 |
+
```
|
268 |
+
precision recall f1-score support
|
269 |
+
|
270 |
+
ORG 0.88 0.89 0.88 3735
|
271 |
+
LOC 0.93 0.95 0.94 3694
|
272 |
+
PER 0.93 0.93 0.93 3947
|
273 |
+
|
274 |
+
micro avg 0.91 0.92 0.92 11376
|
275 |
+
macro avg 0.91 0.92 0.92 11376
|
276 |
+
```
|
277 |
+
|
278 |
+
### Italian
|
279 |
+
Number of documents: 10000
|
280 |
+
```
|
281 |
+
precision recall f1-score support
|
282 |
+
|
283 |
+
LOC 0.88 0.88 0.88 4592
|
284 |
+
ORG 0.86 0.86 0.86 4088
|
285 |
+
PER 0.96 0.96 0.96 4732
|
286 |
+
|
287 |
+
micro avg 0.90 0.90 0.90 13412
|
288 |
+
macro avg 0.90 0.90 0.90 13412
|
289 |
+
```
|
290 |
+
|
291 |
+
### Japanese
|
292 |
+
Number of documents: 10000
|
293 |
+
```
|
294 |
+
precision recall f1-score support
|
295 |
+
|
296 |
+
ORG 0.62 0.61 0.62 4184
|
297 |
+
PER 0.76 0.81 0.78 3812
|
298 |
+
LOC 0.68 0.74 0.71 4281
|
299 |
+
|
300 |
+
micro avg 0.69 0.72 0.70 12277
|
301 |
+
macro avg 0.69 0.72 0.70 12277
|
302 |
+
```
|
303 |
+
|
304 |
+
### Javanese
|
305 |
+
Number of documents: 100
|
306 |
+
```
|
307 |
+
precision recall f1-score support
|
308 |
+
|
309 |
+
ORG 0.79 0.80 0.80 46
|
310 |
+
PER 0.81 0.96 0.88 26
|
311 |
+
LOC 0.75 0.75 0.75 40
|
312 |
+
|
313 |
+
micro avg 0.78 0.82 0.80 112
|
314 |
+
macro avg 0.78 0.82 0.80 112
|
315 |
+
```
|
316 |
+
|
317 |
+
### Kazakh
|
318 |
+
Number of documents: 1000
|
319 |
+
```
|
320 |
+
precision recall f1-score support
|
321 |
+
|
322 |
+
ORG 0.76 0.61 0.68 307
|
323 |
+
LOC 0.78 0.90 0.84 461
|
324 |
+
PER 0.87 0.91 0.89 367
|
325 |
+
|
326 |
+
micro avg 0.81 0.83 0.82 1135
|
327 |
+
macro avg 0.81 0.83 0.81 1135
|
328 |
+
```
|
329 |
+
|
330 |
+
### Korean
|
331 |
+
Number of documents: 10000
|
332 |
+
```
|
333 |
+
precision recall f1-score support
|
334 |
+
|
335 |
+
LOC 0.86 0.89 0.88 5097
|
336 |
+
ORG 0.79 0.74 0.77 4218
|
337 |
+
PER 0.83 0.86 0.84 4014
|
338 |
+
|
339 |
+
micro avg 0.83 0.83 0.83 13329
|
340 |
+
macro avg 0.83 0.83 0.83 13329
|
341 |
+
```
|
342 |
+
|
343 |
+
### Malay
|
344 |
+
Number of documents: 1000
|
345 |
+
```
|
346 |
+
precision recall f1-score support
|
347 |
+
|
348 |
+
ORG 0.87 0.89 0.88 368
|
349 |
+
PER 0.92 0.91 0.91 366
|
350 |
+
LOC 0.94 0.95 0.95 354
|
351 |
+
|
352 |
+
micro avg 0.91 0.92 0.91 1088
|
353 |
+
macro avg 0.91 0.92 0.91 1088
|
354 |
+
```
|
355 |
+
|
356 |
+
### Malayalam
|
357 |
+
Number of documents: 1000
|
358 |
+
```
|
359 |
+
precision recall f1-score support
|
360 |
+
|
361 |
+
ORG 0.75 0.74 0.75 347
|
362 |
+
PER 0.84 0.89 0.86 417
|
363 |
+
LOC 0.74 0.75 0.75 391
|
364 |
+
|
365 |
+
micro avg 0.78 0.80 0.79 1155
|
366 |
+
macro avg 0.78 0.80 0.79 1155
|
367 |
+
```
|
368 |
+
|
369 |
+
### Marathi
|
370 |
+
Number of documents: 1000
|
371 |
+
```
|
372 |
+
precision recall f1-score support
|
373 |
+
|
374 |
+
PER 0.89 0.94 0.92 394
|
375 |
+
LOC 0.82 0.84 0.83 457
|
376 |
+
ORG 0.84 0.78 0.81 339
|
377 |
+
|
378 |
+
micro avg 0.85 0.86 0.85 1190
|
379 |
+
macro avg 0.85 0.86 0.85 1190
|
380 |
+
```
|
381 |
+
|
382 |
+
### Persian
|
383 |
+
Number of documents: 10000
|
384 |
+
```
|
385 |
+
precision recall f1-score support
|
386 |
+
|
387 |
+
PER 0.93 0.92 0.93 3540
|
388 |
+
LOC 0.93 0.93 0.93 3584
|
389 |
+
ORG 0.89 0.92 0.90 3370
|
390 |
+
|
391 |
+
micro avg 0.92 0.92 0.92 10494
|
392 |
+
macro avg 0.92 0.92 0.92 10494
|
393 |
+
```
|
394 |
+
|
395 |
+
### Portuguese
|
396 |
+
Number of documents: 10000
|
397 |
+
```
|
398 |
+
precision recall f1-score support
|
399 |
+
|
400 |
+
LOC 0.90 0.91 0.91 4819
|
401 |
+
PER 0.94 0.92 0.93 4184
|
402 |
+
ORG 0.84 0.88 0.86 3670
|
403 |
+
|
404 |
+
micro avg 0.89 0.91 0.90 12673
|
405 |
+
macro avg 0.90 0.91 0.90 12673
|
406 |
+
```
|
407 |
+
|
408 |
+
### Russian
|
409 |
+
Number of documents: 10000
|
410 |
+
```
|
411 |
+
precision recall f1-score support
|
412 |
+
|
413 |
+
PER 0.93 0.96 0.95 3574
|
414 |
+
LOC 0.87 0.89 0.88 4619
|
415 |
+
ORG 0.82 0.80 0.81 3858
|
416 |
+
|
417 |
+
micro avg 0.87 0.88 0.88 12051
|
418 |
+
macro avg 0.87 0.88 0.88 12051
|
419 |
+
```
|
420 |
+
|
421 |
+
### Spanish
|
422 |
+
Number of documents: 10000
|
423 |
+
```
|
424 |
+
precision recall f1-score support
|
425 |
+
|
426 |
+
PER 0.95 0.93 0.94 3891
|
427 |
+
ORG 0.86 0.88 0.87 3709
|
428 |
+
LOC 0.89 0.91 0.90 4553
|
429 |
+
|
430 |
+
micro avg 0.90 0.91 0.90 12153
|
431 |
+
macro avg 0.90 0.91 0.90 12153
|
432 |
+
```
|
433 |
+
|
434 |
+
### Swahili
|
435 |
+
Number of documents: 1000
|
436 |
+
```
|
437 |
+
precision recall f1-score support
|
438 |
+
|
439 |
+
ORG 0.82 0.85 0.83 349
|
440 |
+
PER 0.95 0.92 0.94 403
|
441 |
+
LOC 0.86 0.89 0.88 450
|
442 |
+
|
443 |
+
micro avg 0.88 0.89 0.88 1202
|
444 |
+
macro avg 0.88 0.89 0.88 1202
|
445 |
+
```
|
446 |
+
|
447 |
+
### Tagalog
|
448 |
+
Number of documents: 1000
|
449 |
+
```
|
450 |
+
precision recall f1-score support
|
451 |
+
|
452 |
+
LOC 0.90 0.91 0.90 338
|
453 |
+
ORG 0.83 0.91 0.87 339
|
454 |
+
PER 0.96 0.93 0.95 350
|
455 |
+
|
456 |
+
micro avg 0.90 0.92 0.91 1027
|
457 |
+
macro avg 0.90 0.92 0.91 1027
|
458 |
+
```
|
459 |
+
|
460 |
+
### Tamil
|
461 |
+
Number of documents: 1000
|
462 |
+
```
|
463 |
+
precision recall f1-score support
|
464 |
+
|
465 |
+
PER 0.90 0.92 0.91 392
|
466 |
+
ORG 0.77 0.76 0.76 370
|
467 |
+
LOC 0.78 0.81 0.79 421
|
468 |
+
|
469 |
+
micro avg 0.82 0.83 0.82 1183
|
470 |
+
macro avg 0.82 0.83 0.82 1183
|
471 |
+
```
|
472 |
+
|
473 |
+
### Telugu
|
474 |
+
Number of documents: 1000
|
475 |
+
```
|
476 |
+
precision recall f1-score support
|
477 |
+
|
478 |
+
ORG 0.67 0.55 0.61 347
|
479 |
+
LOC 0.78 0.87 0.82 453
|
480 |
+
PER 0.73 0.86 0.79 393
|
481 |
+
|
482 |
+
micro avg 0.74 0.77 0.76 1193
|
483 |
+
macro avg 0.73 0.77 0.75 1193
|
484 |
+
```
|
485 |
+
|
486 |
+
### Thai
|
487 |
+
Number of documents: 10000
|
488 |
+
```
|
489 |
+
precision recall f1-score support
|
490 |
+
|
491 |
+
LOC 0.63 0.76 0.69 3928
|
492 |
+
PER 0.78 0.83 0.80 6537
|
493 |
+
ORG 0.59 0.59 0.59 4257
|
494 |
+
|
495 |
+
micro avg 0.68 0.74 0.71 14722
|
496 |
+
macro avg 0.68 0.74 0.71 14722
|
497 |
+
```
|
498 |
+
|
499 |
+
### Turkish
|
500 |
+
Number of documents: 10000
|
501 |
+
```
|
502 |
+
precision recall f1-score support
|
503 |
+
|
504 |
+
PER 0.94 0.94 0.94 4337
|
505 |
+
ORG 0.88 0.89 0.88 4094
|
506 |
+
LOC 0.90 0.92 0.91 4929
|
507 |
+
|
508 |
+
micro avg 0.90 0.92 0.91 13360
|
509 |
+
macro avg 0.91 0.92 0.91 13360
|
510 |
+
```
|
511 |
+
|
512 |
+
### Urdu
|
513 |
+
Number of documents: 1000
|
514 |
+
```
|
515 |
+
precision recall f1-score support
|
516 |
+
|
517 |
+
LOC 0.90 0.95 0.93 352
|
518 |
+
PER 0.96 0.96 0.96 333
|
519 |
+
ORG 0.91 0.90 0.90 326
|
520 |
+
|
521 |
+
micro avg 0.92 0.94 0.93 1011
|
522 |
+
macro avg 0.92 0.94 0.93 1011
|
523 |
+
```
|
524 |
+
|
525 |
+
### Vietnamese
|
526 |
+
Number of documents: 10000
|
527 |
+
```
|
528 |
+
precision recall f1-score support
|
529 |
+
|
530 |
+
ORG 0.86 0.87 0.86 3579
|
531 |
+
LOC 0.88 0.91 0.90 3811
|
532 |
+
PER 0.92 0.93 0.93 3717
|
533 |
+
|
534 |
+
micro avg 0.89 0.90 0.90 11107
|
535 |
+
macro avg 0.89 0.90 0.90 11107
|
536 |
+
```
|
537 |
+
|
538 |
+
### Yoruba
|
539 |
+
Number of documents: 100
|
540 |
+
```
|
541 |
+
precision recall f1-score support
|
542 |
+
|
543 |
+
LOC 0.54 0.72 0.62 36
|
544 |
+
ORG 0.58 0.31 0.41 35
|
545 |
+
PER 0.77 1.00 0.87 36
|
546 |
+
|
547 |
+
micro avg 0.64 0.68 0.66 107
|
548 |
+
macro avg 0.63 0.68 0.63 107
|
549 |
+
```
|
550 |
+
|
551 |
+
## Reproduce the results
|
552 |
+
Download and prepare the dataset from the [XTREME repo](https://github.com/google-research/xtreme#download-the-data). Next, from the root of the transformers repo run:
|
553 |
+
```
|
554 |
+
cd examples/ner
|
555 |
+
python run_tf_ner.py \
|
556 |
+
--data_dir . \
|
557 |
+
--labels ./labels.txt \
|
558 |
+
--model_name_or_path jplu/tf-xlm-roberta-base \
|
559 |
+
--output_dir model \
|
560 |
+
--max-seq-length 128 \
|
561 |
+
--num_train_epochs 2 \
|
562 |
+
--per_gpu_train_batch_size 16 \
|
563 |
+
--per_gpu_eval_batch_size 32 \
|
564 |
+
--do_train \
|
565 |
+
--do_eval \
|
566 |
+
--logging_dir logs \
|
567 |
+
--mode token-classification \
|
568 |
+
--evaluate_during_training \
|
569 |
+
--optimizer_name adamw
|
570 |
+
```
|
571 |
+
|
572 |
+
## Usage with pipelines
|
573 |
+
```python
|
574 |
+
from transformers import pipeline
|
575 |
+
|
576 |
+
nlp_ner = pipeline(
|
577 |
+
"ner",
|
578 |
+
model="jplu/tf-xlm-r-ner-40-lang",
|
579 |
+
tokenizer=(
|
580 |
+
'jplu/tf-xlm-r-ner-40-lang',
|
581 |
+
{"use_fast": True}),
|
582 |
+
framework="tf"
|
583 |
+
)
|
584 |
+
|
585 |
+
text_fr = "Barack Obama est né à Hawaï."
|
586 |
+
text_en = "Barack Obama was born in Hawaii."
|
587 |
+
text_es = "Barack Obama nació en Hawai."
|
588 |
+
text_zh = "巴拉克·奧巴馬(Barack Obama)出生於夏威夷。"
|
589 |
+
text_ar = "ولد باراك أوباما في هاواي."
|
590 |
+
|
591 |
+
nlp_ner(text_fr)
|
592 |
+
#Output: [{'word': '▁Barack', 'score': 0.9894659519195557, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9888848662376404, 'entity': 'PER'}, {'word': '▁Hawa', 'score': 0.998701810836792, 'entity': 'LOC'}, {'word': 'ï', 'score': 0.9987035989761353, 'entity': 'LOC'}]
|
593 |
+
nlp_ner(text_en)
|
594 |
+
#Output: [{'word': '▁Barack', 'score': 0.9929141998291016, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9930834174156189, 'entity': 'PER'}, {'word': '▁Hawaii', 'score': 0.9986202120780945, 'entity': 'LOC'}]
|
595 |
+
nlp_ner(test_es)
|
596 |
+
#Output: [{'word': '▁Barack', 'score': 0.9944776296615601, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9949177503585815, 'entity': 'PER'}, {'word': '▁Hawa', 'score': 0.9987911581993103, 'entity': 'LOC'}, {'word': 'i', 'score': 0.9984861612319946, 'entity': 'LOC'}]
|
597 |
+
nlp_ner(test_zh)
|
598 |
+
#Output: [{'word': '夏威夷', 'score': 0.9988449215888977, 'entity': 'LOC'}]
|
599 |
+
nlp_ner(test_ar)
|
600 |
+
#Output: [{'word': '▁با', 'score': 0.9903655648231506, 'entity': 'PER'}, {'word': 'راك', 'score': 0.9850614666938782, 'entity': 'PER'}, {'word': '▁أوباما', 'score': 0.9850308299064636, 'entity': 'PER'}, {'word': '▁ها', 'score': 0.9477543234825134, 'entity': 'LOC'}, {'word': 'وا', 'score': 0.9428229928016663, 'entity': 'LOC'}, {'word': 'ي', 'score': 0.9319471716880798, 'entity': 'LOC'}]
|
601 |
+
|
602 |
+
```
|