--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: Llama2-7B-MeditronGuideLines-txt-epochs-1-lr-000002 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: meta-llama/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer is_llama_derived_model: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: utrgvseniorproject/MeditronGuidelines type: completion dataset_prepared_path: /home/josegomez15/med-llm/Llama_Preprocess_MeditronGuideLines_txt val_set_size: 0.05 output_dir: ./Llama2-7B-MeditronGuideLines-txt-epochs-1-lr-000002 sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: Llama2-7B-MeditronGuideLines wandb_entity: utrgvmedai wandb_watch: wandb_name: Llama2-7B-MeditronGuideLines-txt-epochs-1-lr-000002 wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 1 #saves_per_epoch: 10 save_steps: 800 #save_total_limit: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000002 train_on_inputs: true group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: false early_stopping_patience: resume_from_checkpoint: true local_rank: logging_steps: 1 xformers_attention: flash_attention: true flash_attn_cross_entropy: false flash_attn_rms_norm: true flash_attn_fuse_qkv: false flash_attn_fuse_mlp: true warmup_steps: 2000 evals_per_epoch: 4 eval_table_size: eval_sample_packing: False debug: deepspeed: /home/josegomez15/axolotl/deepspeed_configs/zero2.json weight_decay: 0.1 fsdp: fsdp_config: special_tokens: ```

# Llama2-7B-MeditronGuideLines-txt-epochs-1-lr-000002 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2000 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3307 | 0.0 | 1 | 1.5317 | | 1.4702 | 0.25 | 1141 | 1.4162 | | 1.3621 | 0.5 | 2282 | 1.4039 | | 1.4502 | 0.75 | 3423 | 1.3953 | | 1.4184 | 1.0 | 4564 | 1.3911 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.18.0 - Tokenizers 0.15.0