Upload folder using huggingface_hub
Browse files- config.json +37 -0
- config_custom.py +191 -0
- generation_config.json +6 -0
- model.safetensors +3 -0
- modeling_custom.py +1563 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +214 -0
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "EleutherAI/pythia-160m",
|
3 |
+
"architectures": [
|
4 |
+
"GPTNeoXForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoModel": "modeling_custom.GPTNeoXModel",
|
8 |
+
"AutoModelForCausalLM": "modeling_custom.GPTNeoXForCausalLM",
|
9 |
+
"AutoConfig": "config_custom.GPTNeoXConfig"
|
10 |
+
},
|
11 |
+
"attention_bias": true,
|
12 |
+
"attention_dropout": 0.0,
|
13 |
+
"bos_token_id": 0,
|
14 |
+
"classifier_dropout": 0.1,
|
15 |
+
"eos_token_id": 0,
|
16 |
+
"hidden_act": "gelu",
|
17 |
+
"hidden_dropout": 0.0,
|
18 |
+
"hidden_size": 768,
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 3072,
|
21 |
+
"layer_norm_eps": 1e-05,
|
22 |
+
"max_position_embeddings": 2048,
|
23 |
+
"model_type": "gpt_neox",
|
24 |
+
"num_attention_heads": 12,
|
25 |
+
"num_hidden_layers": 12,
|
26 |
+
"partial_rotary_factor": 0.25,
|
27 |
+
"rope_scaling": null,
|
28 |
+
"rope_theta": 10000,
|
29 |
+
"rotary_emb_base": 10000,
|
30 |
+
"rotary_pct": 0.25,
|
31 |
+
"tie_word_embeddings": false,
|
32 |
+
"torch_dtype": "bfloat16",
|
33 |
+
"transformers_version": "4.45.0",
|
34 |
+
"use_cache": true,
|
35 |
+
"use_parallel_residual": true,
|
36 |
+
"vocab_size": 50304
|
37 |
+
}
|
config_custom.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""GPTNeoX model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class GPTNeoXConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an
|
28 |
+
GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
29 |
+
with the defaults will yield a similar configuration to that of the GPTNeoX
|
30 |
+
[EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture.
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
|
36 |
+
Args:
|
37 |
+
vocab_size (`int`, *optional*, defaults to 50432):
|
38 |
+
Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the
|
39 |
+
`inputs_ids` passed when calling [`GPTNeoXModel`].
|
40 |
+
hidden_size (`int`, *optional*, defaults to 6144):
|
41 |
+
Dimension of the encoder layers and the pooler layer.
|
42 |
+
num_hidden_layers (`int`, *optional*, defaults to 44):
|
43 |
+
Number of hidden layers in the Transformer encoder.
|
44 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
45 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
46 |
+
intermediate_size (`int`, *optional*, defaults to 24576):
|
47 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
48 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
49 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
50 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
51 |
+
rotary_pct (`float`, *optional*, defaults to 0.25):
|
52 |
+
percentage of hidden dimensions to allocate to rotary embeddings
|
53 |
+
rotary_emb_base (`int`, *optional*, defaults to 10000)
|
54 |
+
base for computing rotary embeddings frequency
|
55 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
56 |
+
The dropout ratio probability of the attention score.
|
57 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
58 |
+
The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp
|
59 |
+
hidden states.
|
60 |
+
classifier_dropout (`float`, *optional*, defaults to 0.1):
|
61 |
+
Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`].
|
62 |
+
|
63 |
+
The dropout ratio for the hidden layer.
|
64 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
65 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
66 |
+
just in case (e.g., 512 or 1024 or 2048).
|
67 |
+
initializer_range (`float`, *optional*, defaults to 1e-5):
|
68 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
69 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
70 |
+
The epsilon used by the layer normalization layers.
|
71 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
73 |
+
relevant if `config.is_decoder=True`.
|
74 |
+
use_parallel_residual (`bool`, *optional*, defaults to `True`):
|
75 |
+
Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training
|
76 |
+
speedup at large scales (e.g. 20B).
|
77 |
+
rope_scaling (`Dict`, *optional*):
|
78 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
79 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
80 |
+
accordingly.
|
81 |
+
Expected contents:
|
82 |
+
`rope_type` (`str`):
|
83 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
84 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
85 |
+
`factor` (`float`, *optional*):
|
86 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
87 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
88 |
+
original maximum pre-trained length.
|
89 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
90 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
91 |
+
pretraining.
|
92 |
+
`attention_factor` (`float`, *optional*):
|
93 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
94 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
95 |
+
`factor` field to infer the suggested value.
|
96 |
+
`beta_fast` (`float`, *optional*):
|
97 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
98 |
+
ramp function. If unspecified, it defaults to 32.
|
99 |
+
`beta_slow` (`float`, *optional*):
|
100 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
101 |
+
ramp function. If unspecified, it defaults to 1.
|
102 |
+
`short_factor` (`List[float]`, *optional*):
|
103 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
104 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
105 |
+
size divided by the number of attention heads divided by 2
|
106 |
+
`long_factor` (`List[float]`, *optional*):
|
107 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
108 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
109 |
+
size divided by the number of attention heads divided by 2
|
110 |
+
`low_freq_factor` (`float`, *optional*):
|
111 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
112 |
+
`high_freq_factor` (`float`, *optional*):
|
113 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
114 |
+
attention_bias (`bool`, *optional*, defaults to `True`):
|
115 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
116 |
+
|
117 |
+
Example:
|
118 |
+
|
119 |
+
```python
|
120 |
+
>>> from transformers import GPTNeoXConfig, GPTNeoXModel
|
121 |
+
|
122 |
+
>>> # Initializing a GPTNeoX gpt-neox-20b style configuration
|
123 |
+
>>> configuration = GPTNeoXConfig()
|
124 |
+
|
125 |
+
>>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration
|
126 |
+
>>> model = GPTNeoXModel(configuration) # doctest: +SKIP
|
127 |
+
|
128 |
+
>>> # Accessing the model configuration
|
129 |
+
>>> configuration = model.config # doctest: +SKIP
|
130 |
+
```"""
|
131 |
+
|
132 |
+
model_type = "gpt_neox"
|
133 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
134 |
+
|
135 |
+
def __init__(
|
136 |
+
self,
|
137 |
+
vocab_size=50432,
|
138 |
+
hidden_size=6144,
|
139 |
+
num_hidden_layers=44,
|
140 |
+
num_attention_heads=64,
|
141 |
+
intermediate_size=24576,
|
142 |
+
hidden_act="gelu",
|
143 |
+
rotary_pct=0.25,
|
144 |
+
rotary_emb_base=10000,
|
145 |
+
attention_dropout=0.0,
|
146 |
+
hidden_dropout=0.0,
|
147 |
+
classifier_dropout=0.1,
|
148 |
+
max_position_embeddings=2048,
|
149 |
+
initializer_range=0.02,
|
150 |
+
layer_norm_eps=1e-5,
|
151 |
+
use_cache=True,
|
152 |
+
bos_token_id=0,
|
153 |
+
eos_token_id=2,
|
154 |
+
tie_word_embeddings=False,
|
155 |
+
use_parallel_residual=True,
|
156 |
+
rope_scaling=None,
|
157 |
+
attention_bias=True,
|
158 |
+
**kwargs,
|
159 |
+
):
|
160 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
161 |
+
self.vocab_size = vocab_size
|
162 |
+
self.max_position_embeddings = max_position_embeddings
|
163 |
+
self.hidden_size = hidden_size
|
164 |
+
self.num_hidden_layers = num_hidden_layers
|
165 |
+
self.num_attention_heads = num_attention_heads
|
166 |
+
self.intermediate_size = intermediate_size
|
167 |
+
self.hidden_act = hidden_act
|
168 |
+
self.rotary_pct = rotary_pct
|
169 |
+
self.partial_rotary_factor = rotary_pct
|
170 |
+
self.rotary_emb_base = rotary_emb_base
|
171 |
+
self.rope_theta = rotary_emb_base
|
172 |
+
self.attention_dropout = attention_dropout
|
173 |
+
self.hidden_dropout = hidden_dropout
|
174 |
+
self.classifier_dropout = classifier_dropout
|
175 |
+
self.initializer_range = initializer_range
|
176 |
+
self.layer_norm_eps = layer_norm_eps
|
177 |
+
self.use_cache = use_cache
|
178 |
+
self.tie_word_embeddings = tie_word_embeddings
|
179 |
+
self.use_parallel_residual = use_parallel_residual
|
180 |
+
self.rope_scaling = rope_scaling
|
181 |
+
self.attention_bias = attention_bias
|
182 |
+
# Validate the correctness of rotary position embeddings parameters
|
183 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
184 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
185 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
186 |
+
rope_config_validation(self)
|
187 |
+
|
188 |
+
if self.hidden_size % self.num_attention_heads != 0:
|
189 |
+
raise ValueError(
|
190 |
+
"The hidden size is not divisble by the number of attention heads! Make sure to update them!"
|
191 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 0,
|
5 |
+
"transformers_version": "4.45.0"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a404de6fc25da2051b82deb74cefcde60ff62a81b54d745e4eca8ce4b17ba49
|
3 |
+
size 324662984
|
modeling_custom.py
ADDED
@@ -0,0 +1,1563 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch GPTNeoX model."""
|
16 |
+
|
17 |
+
from typing import Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
from packaging import version
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
24 |
+
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
27 |
+
from transformers.file_utils import (
|
28 |
+
add_code_sample_docstrings,
|
29 |
+
add_start_docstrings,
|
30 |
+
add_start_docstrings_to_model_forward,
|
31 |
+
replace_return_docstrings,
|
32 |
+
)
|
33 |
+
from transformers.generation import GenerationMixin
|
34 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
35 |
+
from transformers.modeling_outputs import (
|
36 |
+
BaseModelOutputWithPast,
|
37 |
+
CausalLMOutputWithPast,
|
38 |
+
QuestionAnsweringModelOutput,
|
39 |
+
SequenceClassifierOutputWithPast,
|
40 |
+
TokenClassifierOutput,
|
41 |
+
)
|
42 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
43 |
+
from transformers.modeling_utils import PreTrainedModel
|
44 |
+
from transformers.utils import (
|
45 |
+
get_torch_version,
|
46 |
+
is_flash_attn_2_available,
|
47 |
+
is_flash_attn_greater_or_equal_2_10,
|
48 |
+
logging,
|
49 |
+
)
|
50 |
+
from .config_custom import GPTNeoXConfig
|
51 |
+
|
52 |
+
|
53 |
+
if is_flash_attn_2_available():
|
54 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
55 |
+
|
56 |
+
logger = logging.get_logger(__name__)
|
57 |
+
|
58 |
+
_CHECKPOINT_FOR_DOC = "trl-internal-testing/tiny-random-GPTNeoXForCausalLM"
|
59 |
+
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neox-20b"
|
60 |
+
_CONFIG_FOR_DOC = "GPTNeoXConfig"
|
61 |
+
|
62 |
+
|
63 |
+
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
|
64 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
65 |
+
attention_mask: torch.Tensor,
|
66 |
+
sequence_length: int,
|
67 |
+
target_length: int,
|
68 |
+
dtype: torch.dtype,
|
69 |
+
device: torch.device,
|
70 |
+
min_dtype: float,
|
71 |
+
cache_position: torch.Tensor,
|
72 |
+
batch_size: int,
|
73 |
+
):
|
74 |
+
"""
|
75 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
76 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
attention_mask (`torch.Tensor`):
|
80 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
81 |
+
sequence_length (`int`):
|
82 |
+
The sequence length being processed.
|
83 |
+
target_length (`int`):
|
84 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
85 |
+
dtype (`torch.dtype`):
|
86 |
+
The dtype to use for the 4D attention mask.
|
87 |
+
device (`torch.device`):
|
88 |
+
The device to plcae the 4D attention mask on.
|
89 |
+
min_dtype (`float`):
|
90 |
+
The minimum value representable with the dtype `dtype`.
|
91 |
+
cache_position (`torch.Tensor`):
|
92 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
93 |
+
batch_size (`torch.Tensor`):
|
94 |
+
Batch size.
|
95 |
+
"""
|
96 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
97 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
98 |
+
causal_mask = attention_mask
|
99 |
+
else:
|
100 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
101 |
+
if sequence_length != 1:
|
102 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
103 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
104 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
105 |
+
if attention_mask is not None:
|
106 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
107 |
+
mask_length = attention_mask.shape[-1]
|
108 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
109 |
+
padding_mask = padding_mask == 0
|
110 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
111 |
+
padding_mask, min_dtype
|
112 |
+
)
|
113 |
+
|
114 |
+
return causal_mask
|
115 |
+
|
116 |
+
|
117 |
+
class GPTNeoXPreTrainedModel(PreTrainedModel):
|
118 |
+
"""
|
119 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
120 |
+
models.
|
121 |
+
"""
|
122 |
+
|
123 |
+
config_class = GPTNeoXConfig
|
124 |
+
base_model_prefix = "gpt_neox"
|
125 |
+
supports_gradient_checkpointing = True
|
126 |
+
_no_split_modules = ["GPTNeoXLayer"]
|
127 |
+
_skip_keys_device_placement = "past_key_values"
|
128 |
+
_supports_flash_attn_2 = True
|
129 |
+
_supports_cache_class = True
|
130 |
+
_supports_quantized_cache = True
|
131 |
+
_supports_static_cache = True
|
132 |
+
_supports_sdpa = True
|
133 |
+
|
134 |
+
def _init_weights(self, module):
|
135 |
+
"""Initialize the weights"""
|
136 |
+
if isinstance(module, nn.Linear):
|
137 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
138 |
+
if module.bias is not None:
|
139 |
+
module.bias.data.zero_()
|
140 |
+
elif isinstance(module, nn.Embedding):
|
141 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
142 |
+
if module.padding_idx is not None:
|
143 |
+
module.weight.data[module.padding_idx].zero_()
|
144 |
+
elif isinstance(module, nn.LayerNorm):
|
145 |
+
module.bias.data.zero_()
|
146 |
+
module.weight.data.fill_(1.0)
|
147 |
+
|
148 |
+
|
149 |
+
class GPTNeoXAttention(nn.Module):
|
150 |
+
def __init__(self, config, layer_idx=None):
|
151 |
+
super().__init__()
|
152 |
+
self.config = config
|
153 |
+
self.num_attention_heads = config.num_attention_heads
|
154 |
+
self.hidden_size = config.hidden_size
|
155 |
+
if self.hidden_size % self.num_attention_heads != 0:
|
156 |
+
raise ValueError(
|
157 |
+
"The hidden size is not divisble by the number of attention heads! Make sure to update them"
|
158 |
+
)
|
159 |
+
self.head_size = self.hidden_size // self.num_attention_heads
|
160 |
+
self.rotary_ndims = int(self.head_size * config.rotary_pct)
|
161 |
+
self.rope_theta = config.rotary_emb_base
|
162 |
+
self._init_bias(config.max_position_embeddings)
|
163 |
+
|
164 |
+
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
|
165 |
+
self.rotary_emb = GPTNeoXRotaryEmbedding(config=self.config)
|
166 |
+
|
167 |
+
if layer_idx is None:
|
168 |
+
logger.warning_once(
|
169 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
170 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
171 |
+
"when creating this class."
|
172 |
+
)
|
173 |
+
self.norm_factor = self.head_size**-0.5
|
174 |
+
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.attention_bias)
|
175 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
|
176 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
177 |
+
self.is_causal = True
|
178 |
+
self.layer_idx = layer_idx
|
179 |
+
|
180 |
+
def _init_bias(self, max_positions, device=None):
|
181 |
+
self.register_buffer(
|
182 |
+
"bias",
|
183 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
184 |
+
1, 1, max_positions, max_positions
|
185 |
+
),
|
186 |
+
persistent=False,
|
187 |
+
)
|
188 |
+
if device is not None:
|
189 |
+
self.bias = self.bias.to(device)
|
190 |
+
|
191 |
+
def forward(
|
192 |
+
self,
|
193 |
+
hidden_states: torch.FloatTensor,
|
194 |
+
attention_mask: torch.FloatTensor,
|
195 |
+
position_ids: torch.LongTensor,
|
196 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
197 |
+
layer_past: Optional[Cache] = None,
|
198 |
+
use_cache: Optional[bool] = False,
|
199 |
+
output_attentions: Optional[bool] = False,
|
200 |
+
padding_mask: Optional[torch.Tensor] = None,
|
201 |
+
cache_position: Optional[torch.LongTensor] = None,
|
202 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
203 |
+
):
|
204 |
+
# Apply attention-specific projections and rope
|
205 |
+
query, key, value, present = self._attn_projections_and_rope(
|
206 |
+
hidden_states=hidden_states,
|
207 |
+
position_ids=position_ids,
|
208 |
+
layer_past=layer_past,
|
209 |
+
use_cache=use_cache,
|
210 |
+
position_embeddings=position_embeddings,
|
211 |
+
)
|
212 |
+
|
213 |
+
# Compute attention
|
214 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
215 |
+
|
216 |
+
# Reshape outputs
|
217 |
+
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size)
|
218 |
+
attn_output = self.dense(attn_output)
|
219 |
+
|
220 |
+
outputs = (attn_output, present)
|
221 |
+
if output_attentions:
|
222 |
+
outputs += (attn_weights,)
|
223 |
+
|
224 |
+
return outputs
|
225 |
+
|
226 |
+
@classmethod
|
227 |
+
def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
|
228 |
+
"""
|
229 |
+
Splits hidden dim into attn_head_size and num_attention_heads
|
230 |
+
"""
|
231 |
+
# tensor: [bs, seq_len, hidden_size]
|
232 |
+
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
233 |
+
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
234 |
+
tensor = tensor.view(new_shape)
|
235 |
+
# -> [bs, num_attention_heads, seq_len, attn_head_size]
|
236 |
+
tensor = tensor.permute(0, 2, 1, 3)
|
237 |
+
return tensor
|
238 |
+
|
239 |
+
@classmethod
|
240 |
+
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
|
241 |
+
"""
|
242 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
243 |
+
"""
|
244 |
+
# tensor [bs, num_attention_heads, seq_len, attn_head_size]
|
245 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
246 |
+
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
247 |
+
tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size)
|
248 |
+
# -> [bs, seq_len, hidden_size]
|
249 |
+
return tensor
|
250 |
+
|
251 |
+
def _attn_projections_and_rope(
|
252 |
+
self,
|
253 |
+
hidden_states: torch.FloatTensor,
|
254 |
+
position_ids: torch.LongTensor,
|
255 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
256 |
+
use_cache: Optional[bool] = False,
|
257 |
+
cache_position: Optional[torch.LongTensor] = None,
|
258 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
259 |
+
):
|
260 |
+
# Compute QKV
|
261 |
+
# Attention heads [batch, seq_len, hidden_size]
|
262 |
+
# --> [batch, seq_len, (np * 3 * head_size)]
|
263 |
+
qkv = self.query_key_value(hidden_states)
|
264 |
+
|
265 |
+
# [batch, seq_len, (num_heads * 3 * head_size)]
|
266 |
+
# --> [batch, seq_len, num_heads, 3 * head_size]
|
267 |
+
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
|
268 |
+
qkv = qkv.view(*new_qkv_shape)
|
269 |
+
|
270 |
+
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
|
271 |
+
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
|
272 |
+
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
|
273 |
+
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
|
274 |
+
|
275 |
+
# Compute rotary embeddings on rotary_ndims
|
276 |
+
query_rot = query[..., : self.rotary_ndims]
|
277 |
+
query_pass = query[..., self.rotary_ndims :]
|
278 |
+
key_rot = key[..., : self.rotary_ndims]
|
279 |
+
key_pass = key[..., self.rotary_ndims :]
|
280 |
+
|
281 |
+
if position_embeddings is None:
|
282 |
+
logger.warning_once(
|
283 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
284 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
285 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
286 |
+
"removed and `position_embeddings` will be mandatory."
|
287 |
+
)
|
288 |
+
cos, sin = self.rotary_emb(value, position_ids)
|
289 |
+
else:
|
290 |
+
cos, sin = position_embeddings
|
291 |
+
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin)
|
292 |
+
query = torch.cat((query, query_pass), dim=-1)
|
293 |
+
key = torch.cat((key, key_pass), dim=-1)
|
294 |
+
|
295 |
+
# Cache QKV values
|
296 |
+
if layer_past is not None:
|
297 |
+
cache_kwargs = {
|
298 |
+
"sin": sin,
|
299 |
+
"cos": cos,
|
300 |
+
"partial_rotation_size": self.rotary_ndims,
|
301 |
+
"cache_position": cache_position,
|
302 |
+
}
|
303 |
+
key, value = layer_past.update(key, value, self.layer_idx, cache_kwargs)
|
304 |
+
|
305 |
+
return query, key, value, layer_past
|
306 |
+
|
307 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
308 |
+
# q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
|
309 |
+
# compute causal mask from causal mask buffer
|
310 |
+
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
|
311 |
+
key_length = key.size(-2)
|
312 |
+
|
313 |
+
# dynamically increase the causal mask with the key length, if needed.
|
314 |
+
if key_length > self.bias.shape[-1]:
|
315 |
+
self._init_bias(key_length, device=key.device)
|
316 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
317 |
+
|
318 |
+
query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
|
319 |
+
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
|
320 |
+
attn_scores = torch.zeros(
|
321 |
+
batch_size * num_attention_heads,
|
322 |
+
query_length,
|
323 |
+
key_length,
|
324 |
+
dtype=query.dtype,
|
325 |
+
device=key.device,
|
326 |
+
)
|
327 |
+
attn_scores = torch.baddbmm(
|
328 |
+
attn_scores,
|
329 |
+
query,
|
330 |
+
key.transpose(1, 2),
|
331 |
+
beta=1.0,
|
332 |
+
alpha=self.norm_factor,
|
333 |
+
)
|
334 |
+
attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)
|
335 |
+
|
336 |
+
mask_value = torch.finfo(attn_scores.dtype).min
|
337 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
338 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
339 |
+
mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device)
|
340 |
+
attn_scores = torch.where(causal_mask, attn_scores, mask_value)
|
341 |
+
|
342 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
343 |
+
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
|
344 |
+
attn_scores = attn_scores + causal_mask
|
345 |
+
|
346 |
+
attn_weights = nn.functional.softmax(attn_scores, dim=-1)
|
347 |
+
attn_weights = attn_weights.to(value.dtype)
|
348 |
+
|
349 |
+
# Mask heads if we want to
|
350 |
+
if head_mask is not None:
|
351 |
+
attn_weights = attn_weights * head_mask
|
352 |
+
|
353 |
+
attn_weights = self.attention_dropout(attn_weights)
|
354 |
+
|
355 |
+
attn_output = torch.matmul(attn_weights, value)
|
356 |
+
return attn_output, attn_weights
|
357 |
+
|
358 |
+
|
359 |
+
class GPTNeoXFlashAttention2(GPTNeoXAttention):
|
360 |
+
"""
|
361 |
+
GPTNeoX flash attention module. This module inherits from `GPTNeoXAttention` as the weights of the module stays
|
362 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
363 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
364 |
+
"""
|
365 |
+
|
366 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
367 |
+
def __init__(self, *args, **kwargs):
|
368 |
+
super().__init__(*args, **kwargs)
|
369 |
+
|
370 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
371 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
372 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
373 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
374 |
+
|
375 |
+
def forward(
|
376 |
+
self,
|
377 |
+
hidden_states: torch.FloatTensor,
|
378 |
+
attention_mask: torch.FloatTensor,
|
379 |
+
position_ids: torch.LongTensor,
|
380 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
381 |
+
layer_past: Optional[Cache] = None,
|
382 |
+
use_cache: Optional[bool] = False,
|
383 |
+
output_attentions: Optional[bool] = False,
|
384 |
+
cache_position: Optional[torch.LongTensor] = None,
|
385 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
386 |
+
):
|
387 |
+
# Apply attention-specific projections and rope
|
388 |
+
query, key, value, present = self._attn_projections_and_rope(
|
389 |
+
hidden_states=hidden_states,
|
390 |
+
position_ids=position_ids,
|
391 |
+
layer_past=layer_past,
|
392 |
+
use_cache=use_cache,
|
393 |
+
cache_position=cache_position,
|
394 |
+
position_embeddings=position_embeddings,
|
395 |
+
)
|
396 |
+
|
397 |
+
query_length = query.shape[-2]
|
398 |
+
|
399 |
+
# GPT-neo-X casts query and key in fp32 to apply rotary embedding in full precision
|
400 |
+
target_dtype = value.dtype
|
401 |
+
if query.dtype != target_dtype:
|
402 |
+
query = query.to(target_dtype)
|
403 |
+
if key.dtype != target_dtype:
|
404 |
+
key = key.to(target_dtype)
|
405 |
+
|
406 |
+
#TODO: Permute to get the expected shape for Flash Attention
|
407 |
+
query = ...
|
408 |
+
key = ...
|
409 |
+
value = ...
|
410 |
+
|
411 |
+
attention_dropout = self.config.attention_dropout if self.training else 0.0
|
412 |
+
|
413 |
+
#TODO: Compute attention
|
414 |
+
attn_weights = ...
|
415 |
+
|
416 |
+
#TODO: Reshape outputs before projection
|
417 |
+
attn_output = ...
|
418 |
+
|
419 |
+
attn_output = self.dense(attn_output)
|
420 |
+
|
421 |
+
outputs = (attn_output, layer_past)
|
422 |
+
if output_attentions:
|
423 |
+
outputs += (attn_weights,)
|
424 |
+
|
425 |
+
return outputs
|
426 |
+
|
427 |
+
|
428 |
+
class GPTNeoXSdpaAttention(GPTNeoXAttention):
|
429 |
+
"""
|
430 |
+
GPTNeoX attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
431 |
+
`GPTNeoXAttention` as the weights of the module stays untouched. The only changes are on the forward pass
|
432 |
+
to adapt to the SDPA API.
|
433 |
+
"""
|
434 |
+
|
435 |
+
def __init__(self, config, layer_idx=None):
|
436 |
+
super().__init__(config, layer_idx=layer_idx)
|
437 |
+
|
438 |
+
# SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom
|
439 |
+
# attn_mask, so we need to call `.contiguous()`. This was fixed in torch==2.2.0.
|
440 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577
|
441 |
+
self.require_contiguous_qkv = version.parse(get_torch_version()) < version.parse("2.2.0")
|
442 |
+
|
443 |
+
def forward(
|
444 |
+
self,
|
445 |
+
hidden_states: torch.FloatTensor,
|
446 |
+
attention_mask: torch.FloatTensor,
|
447 |
+
position_ids: torch.LongTensor,
|
448 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
449 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
450 |
+
use_cache: Optional[bool] = False,
|
451 |
+
output_attentions: Optional[bool] = False,
|
452 |
+
cache_position: Optional[torch.LongTensor] = None,
|
453 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
454 |
+
):
|
455 |
+
if output_attentions or head_mask is not None:
|
456 |
+
logger.warning_once(
|
457 |
+
"`GPTNeoXSdpaAttention` is used but `torch.nn.functional.scaled_dot_product_attention` does not support "
|
458 |
+
"`output_attentions=True` or `head_mask`. Falling back to the manual attention implementation, but "
|
459 |
+
"specifying the manual implementation will be required from Transformers version v5.0.0 onwards. "
|
460 |
+
'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
461 |
+
)
|
462 |
+
return super().forward(
|
463 |
+
hidden_states=hidden_states,
|
464 |
+
attention_mask=attention_mask,
|
465 |
+
position_ids=position_ids,
|
466 |
+
head_mask=head_mask,
|
467 |
+
layer_past=layer_past,
|
468 |
+
use_cache=use_cache,
|
469 |
+
output_attentions=output_attentions,
|
470 |
+
cache_position=cache_position,
|
471 |
+
)
|
472 |
+
|
473 |
+
bsz, q_len, _ = hidden_states.size()
|
474 |
+
|
475 |
+
# Apply attention-specific projections and rope
|
476 |
+
query, key, value, present = self._attn_projections_and_rope(
|
477 |
+
hidden_states=hidden_states,
|
478 |
+
position_ids=position_ids,
|
479 |
+
layer_past=layer_past,
|
480 |
+
use_cache=use_cache,
|
481 |
+
cache_position=cache_position,
|
482 |
+
position_embeddings=position_embeddings,
|
483 |
+
)
|
484 |
+
|
485 |
+
causal_mask = attention_mask
|
486 |
+
if attention_mask is not None:
|
487 |
+
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
|
488 |
+
|
489 |
+
# GPT-neo-X casts query and key in fp32 to apply rotary embedding in full precision
|
490 |
+
target_dtype = value.dtype
|
491 |
+
if query.dtype != target_dtype:
|
492 |
+
query = query.to(target_dtype)
|
493 |
+
if key.dtype != target_dtype:
|
494 |
+
key = key.to(target_dtype)
|
495 |
+
|
496 |
+
# Avoid torch==2.1.2 specific bug for the memory-efficient backend in SDPA
|
497 |
+
if self.require_contiguous_qkv and query.device.type == "cuda" and attention_mask is not None:
|
498 |
+
query = query.contiguous()
|
499 |
+
key = key.contiguous()
|
500 |
+
value = value.contiguous()
|
501 |
+
|
502 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
503 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
504 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
505 |
+
|
506 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
507 |
+
query=query,
|
508 |
+
key=key,
|
509 |
+
value=value,
|
510 |
+
attn_mask=causal_mask,
|
511 |
+
dropout_p=self.attention_dropout.p if self.training else 0.0,
|
512 |
+
is_causal=is_causal,
|
513 |
+
)
|
514 |
+
|
515 |
+
# Reshape outputs
|
516 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
517 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
518 |
+
|
519 |
+
attn_output = self.dense(attn_output)
|
520 |
+
|
521 |
+
return attn_output, present, None
|
522 |
+
|
523 |
+
|
524 |
+
def attention_mask_func(attention_scores, ltor_mask):
|
525 |
+
attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min)
|
526 |
+
return attention_scores
|
527 |
+
|
528 |
+
|
529 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->GPTNeoX
|
530 |
+
class GPTNeoXRotaryEmbedding(nn.Module):
|
531 |
+
def __init__(
|
532 |
+
self,
|
533 |
+
dim=None,
|
534 |
+
max_position_embeddings=2048,
|
535 |
+
base=10000,
|
536 |
+
device=None,
|
537 |
+
scaling_factor=1.0,
|
538 |
+
rope_type="default",
|
539 |
+
config: Optional[GPTNeoXConfig] = None,
|
540 |
+
):
|
541 |
+
super().__init__()
|
542 |
+
# TODO (joao): remove the `if` below, only used for BC
|
543 |
+
self.rope_kwargs = {}
|
544 |
+
if config is None:
|
545 |
+
logger.warning_once(
|
546 |
+
"`GPTNeoXRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
547 |
+
"`config` argument. All other arguments will be removed in v4.46"
|
548 |
+
)
|
549 |
+
self.rope_kwargs = {
|
550 |
+
"rope_type": rope_type,
|
551 |
+
"factor": scaling_factor,
|
552 |
+
"dim": dim,
|
553 |
+
"base": base,
|
554 |
+
"max_position_embeddings": max_position_embeddings,
|
555 |
+
}
|
556 |
+
self.rope_type = rope_type
|
557 |
+
self.max_seq_len_cached = max_position_embeddings
|
558 |
+
self.original_max_seq_len = max_position_embeddings
|
559 |
+
else:
|
560 |
+
# BC: "rope_type" was originally "type"
|
561 |
+
if config.rope_scaling is not None:
|
562 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
563 |
+
else:
|
564 |
+
self.rope_type = "default"
|
565 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
566 |
+
self.original_max_seq_len = config.max_position_embeddings
|
567 |
+
|
568 |
+
self.config = config
|
569 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
570 |
+
|
571 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
572 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
573 |
+
self.original_inv_freq = self.inv_freq
|
574 |
+
|
575 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
576 |
+
"""
|
577 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
578 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
579 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
580 |
+
"""
|
581 |
+
seq_len = torch.max(position_ids) + 1
|
582 |
+
if seq_len > self.max_seq_len_cached: # growth
|
583 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
584 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
585 |
+
)
|
586 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
587 |
+
self.max_seq_len_cached = seq_len
|
588 |
+
|
589 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
590 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
591 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
592 |
+
|
593 |
+
@torch.no_grad()
|
594 |
+
def forward(self, x, position_ids):
|
595 |
+
if "dynamic" in self.rope_type:
|
596 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
597 |
+
|
598 |
+
# Core RoPE block
|
599 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
600 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
601 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
602 |
+
device_type = x.device.type
|
603 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
604 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
605 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
606 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
607 |
+
cos = emb.cos()
|
608 |
+
sin = emb.sin()
|
609 |
+
|
610 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
611 |
+
cos = cos * self.attention_scaling
|
612 |
+
sin = sin * self.attention_scaling
|
613 |
+
|
614 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
615 |
+
|
616 |
+
|
617 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->GPTNeoX
|
618 |
+
class GPTNeoXLinearScalingRotaryEmbedding(GPTNeoXRotaryEmbedding):
|
619 |
+
"""GPTNeoXRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
620 |
+
|
621 |
+
def __init__(self, *args, **kwargs):
|
622 |
+
logger.warning_once(
|
623 |
+
"`GPTNeoXLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
|
624 |
+
"`GPTNeoXRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
|
625 |
+
)
|
626 |
+
kwargs["rope_type"] = "linear"
|
627 |
+
super().__init__(*args, **kwargs)
|
628 |
+
|
629 |
+
|
630 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->GPTNeoX
|
631 |
+
class GPTNeoXDynamicNTKScalingRotaryEmbedding(GPTNeoXRotaryEmbedding):
|
632 |
+
"""GPTNeoXRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
633 |
+
|
634 |
+
def __init__(self, *args, **kwargs):
|
635 |
+
logger.warning_once(
|
636 |
+
"`GPTNeoXDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
|
637 |
+
"`GPTNeoXRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
|
638 |
+
"__init__)."
|
639 |
+
)
|
640 |
+
kwargs["rope_type"] = "dynamic"
|
641 |
+
super().__init__(*args, **kwargs)
|
642 |
+
|
643 |
+
|
644 |
+
def rotate_half(x):
|
645 |
+
"""Rotates half the hidden dims of the input."""
|
646 |
+
x1 = x[..., : x.shape[-1] // 2]
|
647 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
648 |
+
return torch.cat((-x2, x1), dim=-1)
|
649 |
+
|
650 |
+
|
651 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
652 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
653 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
654 |
+
|
655 |
+
Args:
|
656 |
+
q (`torch.Tensor`): The query tensor.
|
657 |
+
k (`torch.Tensor`): The key tensor.
|
658 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
659 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
660 |
+
position_ids (`torch.Tensor`, *optional*):
|
661 |
+
Deprecated and unused.
|
662 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
663 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
664 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
665 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
666 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
667 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
668 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
669 |
+
Returns:
|
670 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
671 |
+
"""
|
672 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
673 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
674 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
675 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
676 |
+
return q_embed, k_embed
|
677 |
+
|
678 |
+
|
679 |
+
class GPTNeoXMLP(nn.Module):
|
680 |
+
def __init__(self, config):
|
681 |
+
super().__init__()
|
682 |
+
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size)
|
683 |
+
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size)
|
684 |
+
self.act = ACT2FN[config.hidden_act]
|
685 |
+
|
686 |
+
def forward(self, hidden_states):
|
687 |
+
hidden_states = self.dense_h_to_4h(hidden_states)
|
688 |
+
hidden_states = self.act(hidden_states)
|
689 |
+
hidden_states = self.dense_4h_to_h(hidden_states)
|
690 |
+
return hidden_states
|
691 |
+
|
692 |
+
|
693 |
+
GPT_NEOX_ATTENTION_CLASSES = {
|
694 |
+
"eager": GPTNeoXAttention,
|
695 |
+
"flash_attention_2": GPTNeoXFlashAttention2,
|
696 |
+
"sdpa": GPTNeoXSdpaAttention,
|
697 |
+
}
|
698 |
+
|
699 |
+
|
700 |
+
class GPTNeoXLayer(nn.Module):
|
701 |
+
def __init__(self, config, layer_idx):
|
702 |
+
super().__init__()
|
703 |
+
self.use_parallel_residual = config.use_parallel_residual
|
704 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
705 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
706 |
+
self.post_attention_dropout = nn.Dropout(config.hidden_dropout)
|
707 |
+
self.post_mlp_dropout = nn.Dropout(config.hidden_dropout)
|
708 |
+
self.attention = GPT_NEOX_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
709 |
+
self.mlp = GPTNeoXMLP(config)
|
710 |
+
|
711 |
+
def forward(
|
712 |
+
self,
|
713 |
+
hidden_states: Optional[torch.FloatTensor],
|
714 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
715 |
+
position_ids: Optional[torch.LongTensor] = None,
|
716 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
717 |
+
use_cache: Optional[bool] = False,
|
718 |
+
layer_past: Optional[Cache] = None,
|
719 |
+
output_attentions: Optional[bool] = False,
|
720 |
+
cache_position: Optional[torch.LongTensor] = None,
|
721 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
722 |
+
):
|
723 |
+
attention_layer_outputs = self.attention(
|
724 |
+
self.input_layernorm(hidden_states),
|
725 |
+
attention_mask=attention_mask,
|
726 |
+
position_ids=position_ids,
|
727 |
+
layer_past=layer_past,
|
728 |
+
head_mask=head_mask,
|
729 |
+
use_cache=use_cache,
|
730 |
+
output_attentions=output_attentions,
|
731 |
+
cache_position=cache_position,
|
732 |
+
position_embeddings=position_embeddings,
|
733 |
+
)
|
734 |
+
attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights)
|
735 |
+
attn_output = self.post_attention_dropout(attn_output)
|
736 |
+
outputs = attention_layer_outputs[1:]
|
737 |
+
|
738 |
+
if self.use_parallel_residual:
|
739 |
+
# pseudocode:
|
740 |
+
# x = x + attn(ln1(x)) + mlp(ln2(x))
|
741 |
+
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
|
742 |
+
mlp_output = self.post_mlp_dropout(mlp_output)
|
743 |
+
hidden_states = mlp_output + attn_output + hidden_states
|
744 |
+
else:
|
745 |
+
# pseudocode:
|
746 |
+
# x = x + attn(ln1(x))
|
747 |
+
# x = x + mlp(ln2(x))
|
748 |
+
attn_output = attn_output + hidden_states
|
749 |
+
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
|
750 |
+
mlp_output = self.post_mlp_dropout(mlp_output)
|
751 |
+
hidden_states = mlp_output + attn_output
|
752 |
+
|
753 |
+
if use_cache:
|
754 |
+
outputs = (hidden_states,) + outputs # hidden_states, present, (attn_weights)
|
755 |
+
else:
|
756 |
+
outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights)
|
757 |
+
|
758 |
+
return outputs
|
759 |
+
|
760 |
+
|
761 |
+
GPT_NEOX_START_DOCSTRING = r"""
|
762 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
763 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
764 |
+
behavior.
|
765 |
+
|
766 |
+
Parameters:
|
767 |
+
config ([`~GPTNeoXConfig`]): Model configuration class with all the parameters of the model.
|
768 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
769 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
770 |
+
"""
|
771 |
+
|
772 |
+
GPT_NEOX_INPUTS_DOCSTRING = r"""
|
773 |
+
Args:
|
774 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
775 |
+
Indices of input sequence tokens in the vocabulary.
|
776 |
+
|
777 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
778 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
779 |
+
|
780 |
+
[What are input IDs?](../glossary#input-ids)
|
781 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
782 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
783 |
+
|
784 |
+
- 1 for tokens that are **not masked**,
|
785 |
+
- 0 for tokens that are **masked**.
|
786 |
+
|
787 |
+
[What are attention masks?](../glossary#attention-mask)
|
788 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
789 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
790 |
+
config.n_positions - 1]`.
|
791 |
+
|
792 |
+
[What are position IDs?](../glossary#position-ids)
|
793 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
794 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
795 |
+
|
796 |
+
- 1 indicates the head is **not masked**,
|
797 |
+
- 0 indicates the head is **masked**.
|
798 |
+
|
799 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
800 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
801 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
802 |
+
model's internal embedding lookup matrix.
|
803 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
804 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
805 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
806 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
807 |
+
|
808 |
+
Two formats are allowed:
|
809 |
+
- a [`~cache_utils.Cache`] instance, see our
|
810 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
811 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
812 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
813 |
+
cache format.
|
814 |
+
|
815 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
816 |
+
legacy cache format will be returned.
|
817 |
+
|
818 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
819 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
820 |
+
of shape `(batch_size, sequence_length)`.
|
821 |
+
output_attentions (`bool`, *optional*):
|
822 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
823 |
+
tensors for more detail.
|
824 |
+
output_hidden_states (`bool`, *optional*):
|
825 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
826 |
+
more detail.
|
827 |
+
return_dict (`bool`, *optional*):
|
828 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
829 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
830 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
831 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
832 |
+
the complete sequence length.
|
833 |
+
"""
|
834 |
+
|
835 |
+
|
836 |
+
@add_start_docstrings(
|
837 |
+
"The bare GPTNeoX Model transformer outputting raw hidden-states without any specific head on top.",
|
838 |
+
GPT_NEOX_START_DOCSTRING,
|
839 |
+
)
|
840 |
+
class GPTNeoXModel(GPTNeoXPreTrainedModel):
|
841 |
+
def __init__(self, config):
|
842 |
+
super().__init__(config)
|
843 |
+
self.config = config
|
844 |
+
|
845 |
+
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
|
846 |
+
self.emb_dropout = nn.Dropout(config.hidden_dropout)
|
847 |
+
self.layers = nn.ModuleList([GPTNeoXLayer(config, i) for i in range(config.num_hidden_layers)])
|
848 |
+
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
849 |
+
self.rotary_emb = GPTNeoXRotaryEmbedding(config=config)
|
850 |
+
|
851 |
+
self._attn_implementation = config._attn_implementation
|
852 |
+
|
853 |
+
self.gradient_checkpointing = False
|
854 |
+
|
855 |
+
# Initialize weights and apply final processing
|
856 |
+
self.post_init()
|
857 |
+
|
858 |
+
def get_input_embeddings(self):
|
859 |
+
return self.embed_in
|
860 |
+
|
861 |
+
def set_input_embeddings(self, value):
|
862 |
+
self.embed_in = value
|
863 |
+
|
864 |
+
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
865 |
+
@add_code_sample_docstrings(
|
866 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
867 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
868 |
+
output_type=BaseModelOutputWithPast,
|
869 |
+
config_class=_CONFIG_FOR_DOC,
|
870 |
+
)
|
871 |
+
def forward(
|
872 |
+
self,
|
873 |
+
input_ids: Optional[torch.LongTensor] = None,
|
874 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
875 |
+
position_ids: Optional[torch.LongTensor] = None,
|
876 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
877 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
878 |
+
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
|
879 |
+
use_cache: Optional[bool] = None,
|
880 |
+
output_attentions: Optional[bool] = None,
|
881 |
+
output_hidden_states: Optional[bool] = None,
|
882 |
+
return_dict: Optional[bool] = None,
|
883 |
+
cache_position: Optional[torch.LongTensor] = None,
|
884 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
885 |
+
r"""
|
886 |
+
use_cache (`bool`, *optional*):
|
887 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
888 |
+
`past_key_values`).
|
889 |
+
"""
|
890 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
891 |
+
output_hidden_states = (
|
892 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
893 |
+
)
|
894 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
895 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
896 |
+
|
897 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
898 |
+
raise ValueError(
|
899 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
900 |
+
)
|
901 |
+
|
902 |
+
if self.gradient_checkpointing and self.training:
|
903 |
+
if use_cache:
|
904 |
+
logger.warning_once(
|
905 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
906 |
+
)
|
907 |
+
use_cache = False
|
908 |
+
|
909 |
+
if inputs_embeds is None:
|
910 |
+
inputs_embeds = self.embed_in(input_ids)
|
911 |
+
|
912 |
+
# kept for BC (non `Cache` `past_key_values` inputs)
|
913 |
+
return_legacy_cache = False
|
914 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
915 |
+
return_legacy_cache = True
|
916 |
+
if past_key_values is None:
|
917 |
+
past_key_values = DynamicCache()
|
918 |
+
else:
|
919 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
920 |
+
logger.warning_once(
|
921 |
+
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
922 |
+
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
923 |
+
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
924 |
+
)
|
925 |
+
|
926 |
+
seq_length = inputs_embeds.shape[1]
|
927 |
+
if cache_position is None:
|
928 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
929 |
+
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_length, device=inputs_embeds.device)
|
930 |
+
|
931 |
+
if position_ids is None:
|
932 |
+
position_ids = cache_position.unsqueeze(0)
|
933 |
+
|
934 |
+
causal_mask = self._update_causal_mask(
|
935 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
936 |
+
)
|
937 |
+
|
938 |
+
# Prepare head mask if needed
|
939 |
+
# 1.0 in head_mask indicate we keep the head
|
940 |
+
# attention_probs has shape bsz x n_heads x N x N
|
941 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
942 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
943 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
944 |
+
hidden_states = self.emb_dropout(inputs_embeds)
|
945 |
+
|
946 |
+
# create position embeddings to be shared across the decoder layers
|
947 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
948 |
+
|
949 |
+
next_decoder_cache = None
|
950 |
+
all_attentions = () if output_attentions else None
|
951 |
+
all_hidden_states = () if output_hidden_states else None
|
952 |
+
for i, layer in enumerate(
|
953 |
+
self.layers,
|
954 |
+
):
|
955 |
+
if output_hidden_states:
|
956 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
957 |
+
|
958 |
+
if self.gradient_checkpointing and self.training:
|
959 |
+
outputs = self._gradient_checkpointing_func(
|
960 |
+
layer.__call__,
|
961 |
+
hidden_states,
|
962 |
+
causal_mask,
|
963 |
+
position_ids,
|
964 |
+
head_mask[i],
|
965 |
+
use_cache,
|
966 |
+
None,
|
967 |
+
output_attentions,
|
968 |
+
cache_position,
|
969 |
+
position_embeddings,
|
970 |
+
)
|
971 |
+
else:
|
972 |
+
outputs = layer(
|
973 |
+
hidden_states,
|
974 |
+
attention_mask=causal_mask,
|
975 |
+
position_ids=position_ids,
|
976 |
+
head_mask=head_mask[i],
|
977 |
+
layer_past=past_key_values,
|
978 |
+
use_cache=use_cache,
|
979 |
+
output_attentions=output_attentions,
|
980 |
+
cache_position=cache_position,
|
981 |
+
position_embeddings=position_embeddings,
|
982 |
+
)
|
983 |
+
hidden_states = outputs[0]
|
984 |
+
if use_cache is True:
|
985 |
+
next_decoder_cache = outputs[1]
|
986 |
+
if output_attentions:
|
987 |
+
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
|
988 |
+
|
989 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
990 |
+
# Add last hidden state
|
991 |
+
if output_hidden_states:
|
992 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
993 |
+
|
994 |
+
next_cache = next_decoder_cache if use_cache else None
|
995 |
+
if return_legacy_cache:
|
996 |
+
next_cache = next_cache.to_legacy_cache()
|
997 |
+
|
998 |
+
if not return_dict:
|
999 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attentions] if v is not None)
|
1000 |
+
|
1001 |
+
return BaseModelOutputWithPast(
|
1002 |
+
last_hidden_state=hidden_states,
|
1003 |
+
past_key_values=next_cache,
|
1004 |
+
hidden_states=all_hidden_states,
|
1005 |
+
attentions=all_attentions,
|
1006 |
+
)
|
1007 |
+
|
1008 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
|
1009 |
+
def _update_causal_mask(
|
1010 |
+
self,
|
1011 |
+
attention_mask: torch.Tensor,
|
1012 |
+
input_tensor: torch.Tensor,
|
1013 |
+
cache_position: torch.Tensor,
|
1014 |
+
past_key_values: Cache,
|
1015 |
+
output_attentions: bool,
|
1016 |
+
):
|
1017 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1018 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1019 |
+
return attention_mask
|
1020 |
+
return None
|
1021 |
+
|
1022 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1023 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1024 |
+
# to infer the attention mask.
|
1025 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1026 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
1027 |
+
|
1028 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
1029 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
1030 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1031 |
+
attention_mask,
|
1032 |
+
inputs_embeds=input_tensor,
|
1033 |
+
past_key_values_length=past_seen_tokens,
|
1034 |
+
is_training=self.training,
|
1035 |
+
):
|
1036 |
+
return None
|
1037 |
+
|
1038 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1039 |
+
min_dtype = torch.finfo(dtype).min
|
1040 |
+
sequence_length = input_tensor.shape[1]
|
1041 |
+
if using_static_cache:
|
1042 |
+
target_length = past_key_values.get_max_length()
|
1043 |
+
else:
|
1044 |
+
target_length = (
|
1045 |
+
attention_mask.shape[-1]
|
1046 |
+
if isinstance(attention_mask, torch.Tensor)
|
1047 |
+
else past_seen_tokens + sequence_length + 1
|
1048 |
+
)
|
1049 |
+
|
1050 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
1051 |
+
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
1052 |
+
attention_mask,
|
1053 |
+
sequence_length=sequence_length,
|
1054 |
+
target_length=target_length,
|
1055 |
+
dtype=dtype,
|
1056 |
+
device=device,
|
1057 |
+
min_dtype=min_dtype,
|
1058 |
+
cache_position=cache_position,
|
1059 |
+
batch_size=input_tensor.shape[0],
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
if (
|
1063 |
+
self.config._attn_implementation == "sdpa"
|
1064 |
+
and attention_mask is not None
|
1065 |
+
and attention_mask.device.type == "cuda"
|
1066 |
+
and not output_attentions
|
1067 |
+
):
|
1068 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1069 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1070 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1071 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1072 |
+
|
1073 |
+
return causal_mask
|
1074 |
+
|
1075 |
+
|
1076 |
+
@add_start_docstrings(
|
1077 |
+
"""GPTNeoX Model with a `language modeling` head on top for CLM fine-tuning.""", GPT_NEOX_START_DOCSTRING
|
1078 |
+
)
|
1079 |
+
class GPTNeoXForCausalLM(GPTNeoXPreTrainedModel, GenerationMixin):
|
1080 |
+
_tied_weights_keys = ["embed_out.weight"]
|
1081 |
+
|
1082 |
+
def __init__(self, config):
|
1083 |
+
super().__init__(config)
|
1084 |
+
|
1085 |
+
self.gpt_neox = GPTNeoXModel(config)
|
1086 |
+
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1087 |
+
|
1088 |
+
# Initialize weights and apply final processing
|
1089 |
+
self.post_init()
|
1090 |
+
|
1091 |
+
def get_output_embeddings(self):
|
1092 |
+
return self.embed_out
|
1093 |
+
|
1094 |
+
def set_output_embeddings(self, new_embeddings):
|
1095 |
+
self.embed_out = new_embeddings
|
1096 |
+
|
1097 |
+
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1098 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1099 |
+
def forward(
|
1100 |
+
self,
|
1101 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1102 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1103 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1104 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1105 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1106 |
+
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
|
1107 |
+
labels: Optional[torch.LongTensor] = None,
|
1108 |
+
use_cache: Optional[bool] = None,
|
1109 |
+
output_attentions: Optional[bool] = None,
|
1110 |
+
output_hidden_states: Optional[bool] = None,
|
1111 |
+
return_dict: Optional[bool] = None,
|
1112 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1113 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1114 |
+
r"""
|
1115 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1116 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1117 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
1118 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
|
1119 |
+
use_cache (`bool`, *optional*):
|
1120 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1121 |
+
`past_key_values`).
|
1122 |
+
|
1123 |
+
Returns:
|
1124 |
+
|
1125 |
+
Example:
|
1126 |
+
|
1127 |
+
```python
|
1128 |
+
>>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig
|
1129 |
+
>>> import torch
|
1130 |
+
|
1131 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
1132 |
+
>>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b")
|
1133 |
+
>>> config.is_decoder = True
|
1134 |
+
>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)
|
1135 |
+
|
1136 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1137 |
+
>>> outputs = model(**inputs)
|
1138 |
+
|
1139 |
+
>>> prediction_logits = outputs.logits
|
1140 |
+
```"""
|
1141 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1142 |
+
|
1143 |
+
outputs = self.gpt_neox(
|
1144 |
+
input_ids,
|
1145 |
+
attention_mask=attention_mask,
|
1146 |
+
position_ids=position_ids,
|
1147 |
+
head_mask=head_mask,
|
1148 |
+
inputs_embeds=inputs_embeds,
|
1149 |
+
past_key_values=past_key_values,
|
1150 |
+
use_cache=use_cache,
|
1151 |
+
output_attentions=output_attentions,
|
1152 |
+
output_hidden_states=output_hidden_states,
|
1153 |
+
return_dict=return_dict,
|
1154 |
+
cache_position=cache_position,
|
1155 |
+
)
|
1156 |
+
|
1157 |
+
hidden_states = outputs[0]
|
1158 |
+
lm_logits = self.embed_out(hidden_states)
|
1159 |
+
|
1160 |
+
lm_loss = None
|
1161 |
+
if labels is not None:
|
1162 |
+
# move labels to correct device to enable model parallelism
|
1163 |
+
labels = labels.to(lm_logits.device)
|
1164 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1165 |
+
shift_logits = lm_logits[:, :-1, :].contiguous()
|
1166 |
+
labels = labels[:, 1:].contiguous()
|
1167 |
+
loss_fct = CrossEntropyLoss()
|
1168 |
+
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
|
1169 |
+
|
1170 |
+
if not return_dict:
|
1171 |
+
output = (lm_logits,) + outputs[1:]
|
1172 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1173 |
+
|
1174 |
+
return CausalLMOutputWithPast(
|
1175 |
+
loss=lm_loss,
|
1176 |
+
logits=lm_logits,
|
1177 |
+
past_key_values=outputs.past_key_values,
|
1178 |
+
hidden_states=outputs.hidden_states,
|
1179 |
+
attentions=outputs.attentions,
|
1180 |
+
)
|
1181 |
+
|
1182 |
+
# can't be copied from llama, gpt-neox has embed_out and not lm_head
|
1183 |
+
def prepare_inputs_for_generation(
|
1184 |
+
self,
|
1185 |
+
input_ids,
|
1186 |
+
past_key_values=None,
|
1187 |
+
attention_mask=None,
|
1188 |
+
inputs_embeds=None,
|
1189 |
+
cache_position=None,
|
1190 |
+
position_ids=None,
|
1191 |
+
use_cache=True,
|
1192 |
+
**kwargs,
|
1193 |
+
):
|
1194 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
1195 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
1196 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
1197 |
+
if past_key_values is not None:
|
1198 |
+
if inputs_embeds is not None: # Exception 1
|
1199 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
1200 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
1201 |
+
input_ids = input_ids[:, cache_position]
|
1202 |
+
|
1203 |
+
if attention_mask is not None and position_ids is None:
|
1204 |
+
# create position_ids on the fly for batch generation
|
1205 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1206 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1207 |
+
if past_key_values:
|
1208 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1209 |
+
|
1210 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
|
1211 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
1212 |
+
|
1213 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1214 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
1215 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
1216 |
+
else:
|
1217 |
+
# The clone here is for the same reason as for `position_ids`.
|
1218 |
+
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
1219 |
+
|
1220 |
+
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
1221 |
+
if model_inputs["inputs_embeds"] is not None:
|
1222 |
+
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
1223 |
+
device = model_inputs["inputs_embeds"].device
|
1224 |
+
else:
|
1225 |
+
batch_size, sequence_length = model_inputs["input_ids"].shape
|
1226 |
+
device = model_inputs["input_ids"].device
|
1227 |
+
|
1228 |
+
dtype = self.embed_out.weight.dtype
|
1229 |
+
min_dtype = torch.finfo(dtype).min
|
1230 |
+
|
1231 |
+
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
1232 |
+
attention_mask,
|
1233 |
+
sequence_length=sequence_length,
|
1234 |
+
target_length=past_key_values.get_max_length(),
|
1235 |
+
dtype=dtype,
|
1236 |
+
device=device,
|
1237 |
+
min_dtype=min_dtype,
|
1238 |
+
cache_position=cache_position,
|
1239 |
+
batch_size=batch_size,
|
1240 |
+
)
|
1241 |
+
|
1242 |
+
model_inputs.update(
|
1243 |
+
{
|
1244 |
+
"position_ids": position_ids,
|
1245 |
+
"cache_position": cache_position,
|
1246 |
+
"past_key_values": past_key_values,
|
1247 |
+
"use_cache": use_cache,
|
1248 |
+
"attention_mask": attention_mask,
|
1249 |
+
}
|
1250 |
+
)
|
1251 |
+
return model_inputs
|
1252 |
+
|
1253 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1254 |
+
reordered_past = ()
|
1255 |
+
for layer_past in past_key_values:
|
1256 |
+
reordered_past += (
|
1257 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
|
1258 |
+
+ layer_past[2:],
|
1259 |
+
)
|
1260 |
+
return reordered_past
|
1261 |
+
|
1262 |
+
|
1263 |
+
@add_start_docstrings(
|
1264 |
+
"""
|
1265 |
+
The GPTNeoX Model transformer with a sequence classification head on top (linear layer).
|
1266 |
+
|
1267 |
+
[`GPTNeoXForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1268 |
+
(e.g. GPT-1) do.
|
1269 |
+
|
1270 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1271 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1272 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1273 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1274 |
+
each row of the batch).
|
1275 |
+
""",
|
1276 |
+
GPT_NEOX_START_DOCSTRING,
|
1277 |
+
)
|
1278 |
+
class GPTNeoXForSequenceClassification(GPTNeoXPreTrainedModel):
|
1279 |
+
def __init__(self, config):
|
1280 |
+
super().__init__(config)
|
1281 |
+
self.num_labels = config.num_labels
|
1282 |
+
self.gpt_neox = GPTNeoXModel(config)
|
1283 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1284 |
+
|
1285 |
+
# Initialize weights and apply final processing
|
1286 |
+
self.post_init()
|
1287 |
+
|
1288 |
+
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
|
1289 |
+
@add_code_sample_docstrings(
|
1290 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1291 |
+
output_type=SequenceClassifierOutputWithPast,
|
1292 |
+
config_class=_CONFIG_FOR_DOC,
|
1293 |
+
)
|
1294 |
+
def forward(
|
1295 |
+
self,
|
1296 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1297 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1298 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1299 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1300 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1301 |
+
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
|
1302 |
+
labels: Optional[torch.LongTensor] = None,
|
1303 |
+
use_cache: Optional[bool] = None,
|
1304 |
+
output_attentions: Optional[bool] = None,
|
1305 |
+
output_hidden_states: Optional[bool] = None,
|
1306 |
+
return_dict: Optional[bool] = None,
|
1307 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
1308 |
+
r"""
|
1309 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1310 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1311 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1312 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1313 |
+
"""
|
1314 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1315 |
+
|
1316 |
+
outputs = self.gpt_neox(
|
1317 |
+
input_ids,
|
1318 |
+
attention_mask=attention_mask,
|
1319 |
+
position_ids=position_ids,
|
1320 |
+
head_mask=head_mask,
|
1321 |
+
inputs_embeds=inputs_embeds,
|
1322 |
+
past_key_values=past_key_values,
|
1323 |
+
use_cache=use_cache,
|
1324 |
+
output_attentions=output_attentions,
|
1325 |
+
output_hidden_states=output_hidden_states,
|
1326 |
+
return_dict=return_dict,
|
1327 |
+
)
|
1328 |
+
hidden_states = outputs[0]
|
1329 |
+
logits = self.score(hidden_states)
|
1330 |
+
|
1331 |
+
if input_ids is not None:
|
1332 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
1333 |
+
else:
|
1334 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
1335 |
+
|
1336 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1337 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1338 |
+
if self.config.pad_token_id is None:
|
1339 |
+
sequence_lengths = -1
|
1340 |
+
else:
|
1341 |
+
if input_ids is not None:
|
1342 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1343 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1344 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1345 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1346 |
+
else:
|
1347 |
+
sequence_lengths = -1
|
1348 |
+
logger.warning_once(
|
1349 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1350 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1351 |
+
)
|
1352 |
+
|
1353 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1354 |
+
|
1355 |
+
loss = None
|
1356 |
+
if labels is not None:
|
1357 |
+
labels = labels.to(logits.device)
|
1358 |
+
if self.config.problem_type is None:
|
1359 |
+
if self.num_labels == 1:
|
1360 |
+
self.config.problem_type = "regression"
|
1361 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1362 |
+
self.config.problem_type = "single_label_classification"
|
1363 |
+
else:
|
1364 |
+
self.config.problem_type = "multi_label_classification"
|
1365 |
+
|
1366 |
+
if self.config.problem_type == "regression":
|
1367 |
+
loss_fct = MSELoss()
|
1368 |
+
if self.num_labels == 1:
|
1369 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1370 |
+
else:
|
1371 |
+
loss = loss_fct(pooled_logits, labels)
|
1372 |
+
elif self.config.problem_type == "single_label_classification":
|
1373 |
+
loss_fct = CrossEntropyLoss()
|
1374 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1375 |
+
elif self.config.problem_type == "multi_label_classification":
|
1376 |
+
loss_fct = BCEWithLogitsLoss()
|
1377 |
+
loss = loss_fct(pooled_logits, labels)
|
1378 |
+
if not return_dict:
|
1379 |
+
output = (pooled_logits,) + outputs[1:]
|
1380 |
+
return ((loss,) + output) if loss is not None else output
|
1381 |
+
|
1382 |
+
return SequenceClassifierOutputWithPast(
|
1383 |
+
loss=loss,
|
1384 |
+
logits=pooled_logits,
|
1385 |
+
past_key_values=outputs.past_key_values,
|
1386 |
+
hidden_states=outputs.hidden_states,
|
1387 |
+
attentions=outputs.attentions,
|
1388 |
+
)
|
1389 |
+
|
1390 |
+
|
1391 |
+
class GPTNeoXForTokenClassification(GPTNeoXPreTrainedModel):
|
1392 |
+
def __init__(self, config):
|
1393 |
+
super().__init__(config)
|
1394 |
+
self.num_labels = config.num_labels
|
1395 |
+
|
1396 |
+
self.gpt_neox = GPTNeoXModel(config)
|
1397 |
+
self.dropout = nn.Dropout(config.classifier_dropout)
|
1398 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1399 |
+
|
1400 |
+
# Initialize weights and apply final processing
|
1401 |
+
self.post_init()
|
1402 |
+
|
1403 |
+
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
|
1404 |
+
@add_code_sample_docstrings(
|
1405 |
+
checkpoint="LarsJonasson/pythia-410m-deduped-sft-swedish",
|
1406 |
+
output_type=TokenClassifierOutput,
|
1407 |
+
config_class=_CONFIG_FOR_DOC,
|
1408 |
+
expected_loss=0.25,
|
1409 |
+
)
|
1410 |
+
def forward(
|
1411 |
+
self,
|
1412 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1413 |
+
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor]]]] = None,
|
1414 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1415 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1416 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1417 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1418 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1419 |
+
labels: Optional[torch.LongTensor] = None,
|
1420 |
+
use_cache: Optional[bool] = None,
|
1421 |
+
output_attentions: Optional[bool] = None,
|
1422 |
+
output_hidden_states: Optional[bool] = None,
|
1423 |
+
return_dict: Optional[bool] = None,
|
1424 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1425 |
+
r"""
|
1426 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1427 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1428 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1429 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1430 |
+
"""
|
1431 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1432 |
+
|
1433 |
+
outputs = self.gpt_neox(
|
1434 |
+
input_ids,
|
1435 |
+
past_key_values=past_key_values,
|
1436 |
+
attention_mask=attention_mask,
|
1437 |
+
position_ids=position_ids,
|
1438 |
+
head_mask=head_mask,
|
1439 |
+
inputs_embeds=inputs_embeds,
|
1440 |
+
use_cache=use_cache,
|
1441 |
+
output_attentions=output_attentions,
|
1442 |
+
output_hidden_states=output_hidden_states,
|
1443 |
+
return_dict=return_dict,
|
1444 |
+
)
|
1445 |
+
|
1446 |
+
hidden_states = outputs[0]
|
1447 |
+
hidden_states = self.dropout(hidden_states)
|
1448 |
+
logits = self.classifier(hidden_states)
|
1449 |
+
|
1450 |
+
loss = None
|
1451 |
+
if labels is not None:
|
1452 |
+
labels = labels.to(logits.device)
|
1453 |
+
loss_fct = CrossEntropyLoss()
|
1454 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1455 |
+
|
1456 |
+
if not return_dict:
|
1457 |
+
output = (logits,) + outputs[2:]
|
1458 |
+
return ((loss,) + output) if loss is not None else output
|
1459 |
+
|
1460 |
+
return TokenClassifierOutput(
|
1461 |
+
loss=loss,
|
1462 |
+
logits=logits,
|
1463 |
+
hidden_states=outputs.hidden_states,
|
1464 |
+
attentions=outputs.attentions,
|
1465 |
+
)
|
1466 |
+
|
1467 |
+
|
1468 |
+
@add_start_docstrings(
|
1469 |
+
"""
|
1470 |
+
The GPT-NeoX Model transformer with a span classification head on top for extractive question-answering tasks like
|
1471 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1472 |
+
""",
|
1473 |
+
GPT_NEOX_START_DOCSTRING,
|
1474 |
+
)
|
1475 |
+
class GPTNeoXForQuestionAnswering(GPTNeoXPreTrainedModel):
|
1476 |
+
def __init__(self, config):
|
1477 |
+
super().__init__(config)
|
1478 |
+
self.num_labels = config.num_labels
|
1479 |
+
self.gpt_neox = GPTNeoXModel(config)
|
1480 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1481 |
+
|
1482 |
+
# Initialize weights and apply final processing
|
1483 |
+
self.post_init()
|
1484 |
+
|
1485 |
+
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1486 |
+
@add_code_sample_docstrings(
|
1487 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1488 |
+
output_type=QuestionAnsweringModelOutput,
|
1489 |
+
config_class=_CONFIG_FOR_DOC,
|
1490 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
1491 |
+
)
|
1492 |
+
def forward(
|
1493 |
+
self,
|
1494 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1495 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1496 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1497 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1498 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1499 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1500 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1501 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1502 |
+
output_attentions: Optional[bool] = None,
|
1503 |
+
output_hidden_states: Optional[bool] = None,
|
1504 |
+
return_dict: Optional[bool] = None,
|
1505 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1506 |
+
r"""
|
1507 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1508 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1509 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1510 |
+
are not taken into account for computing the loss.
|
1511 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1512 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1513 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1514 |
+
are not taken into account for computing the loss.
|
1515 |
+
"""
|
1516 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1517 |
+
|
1518 |
+
outputs = self.gpt_neox(
|
1519 |
+
input_ids,
|
1520 |
+
attention_mask=attention_mask,
|
1521 |
+
position_ids=position_ids,
|
1522 |
+
head_mask=head_mask,
|
1523 |
+
inputs_embeds=inputs_embeds,
|
1524 |
+
output_attentions=output_attentions,
|
1525 |
+
output_hidden_states=output_hidden_states,
|
1526 |
+
return_dict=return_dict,
|
1527 |
+
)
|
1528 |
+
|
1529 |
+
sequence_output = outputs[0]
|
1530 |
+
|
1531 |
+
logits = self.qa_outputs(sequence_output)
|
1532 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1533 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1534 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1535 |
+
|
1536 |
+
total_loss = None
|
1537 |
+
if start_positions is not None and end_positions is not None:
|
1538 |
+
# If we are on multi-GPU, split add a dimension
|
1539 |
+
if len(start_positions.size()) > 1:
|
1540 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1541 |
+
if len(end_positions.size()) > 1:
|
1542 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1543 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1544 |
+
ignored_index = start_logits.size(1)
|
1545 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1546 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1547 |
+
|
1548 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1549 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1550 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1551 |
+
total_loss = (start_loss + end_loss) / 2
|
1552 |
+
|
1553 |
+
if not return_dict:
|
1554 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1555 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1556 |
+
|
1557 |
+
return QuestionAnsweringModelOutput(
|
1558 |
+
loss=total_loss,
|
1559 |
+
start_logits=start_logits,
|
1560 |
+
end_logits=end_logits,
|
1561 |
+
hidden_states=outputs.hidden_states,
|
1562 |
+
attentions=outputs.attentions,
|
1563 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<|padding|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"50254": {
|
23 |
+
"content": " ",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"50255": {
|
31 |
+
"content": " ",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": false
|
37 |
+
},
|
38 |
+
"50256": {
|
39 |
+
"content": " ",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": true,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": false
|
45 |
+
},
|
46 |
+
"50257": {
|
47 |
+
"content": " ",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": true,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": false
|
53 |
+
},
|
54 |
+
"50258": {
|
55 |
+
"content": " ",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": true,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"50259": {
|
63 |
+
"content": " ",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": true,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": false
|
69 |
+
},
|
70 |
+
"50260": {
|
71 |
+
"content": " ",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": true,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": false
|
77 |
+
},
|
78 |
+
"50261": {
|
79 |
+
"content": " ",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": true,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": false
|
85 |
+
},
|
86 |
+
"50262": {
|
87 |
+
"content": " ",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": true,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"50263": {
|
95 |
+
"content": " ",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": true,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": false
|
101 |
+
},
|
102 |
+
"50264": {
|
103 |
+
"content": " ",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": true,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": false
|
109 |
+
},
|
110 |
+
"50265": {
|
111 |
+
"content": " ",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": true,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": false
|
117 |
+
},
|
118 |
+
"50266": {
|
119 |
+
"content": " ",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": true,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": false
|
125 |
+
},
|
126 |
+
"50267": {
|
127 |
+
"content": " ",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": true,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"50268": {
|
135 |
+
"content": " ",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": true,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"50269": {
|
143 |
+
"content": " ",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": true,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"50270": {
|
151 |
+
"content": " ",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": true,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"50271": {
|
159 |
+
"content": " ",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": true,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"50272": {
|
167 |
+
"content": " ",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": true,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"50273": {
|
175 |
+
"content": " ",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": true,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": false
|
181 |
+
},
|
182 |
+
"50274": {
|
183 |
+
"content": " ",
|
184 |
+
"lstrip": false,
|
185 |
+
"normalized": true,
|
186 |
+
"rstrip": false,
|
187 |
+
"single_word": false,
|
188 |
+
"special": false
|
189 |
+
},
|
190 |
+
"50275": {
|
191 |
+
"content": " ",
|
192 |
+
"lstrip": false,
|
193 |
+
"normalized": true,
|
194 |
+
"rstrip": false,
|
195 |
+
"single_word": false,
|
196 |
+
"special": false
|
197 |
+
},
|
198 |
+
"50276": {
|
199 |
+
"content": " ",
|
200 |
+
"lstrip": false,
|
201 |
+
"normalized": true,
|
202 |
+
"rstrip": false,
|
203 |
+
"single_word": false,
|
204 |
+
"special": false
|
205 |
+
}
|
206 |
+
},
|
207 |
+
"bos_token": "<|endoftext|>",
|
208 |
+
"clean_up_tokenization_spaces": true,
|
209 |
+
"eos_token": "<|endoftext|>",
|
210 |
+
"model_max_length": 1000000000000000019884624838656,
|
211 |
+
"pad_token": null,
|
212 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
213 |
+
"unk_token": "<|endoftext|>"
|
214 |
+
}
|