|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.distributed import ProcessGroup |
|
|
|
|
|
try: |
|
from flash_attn.ops.activations import swiglu |
|
except ImportError: |
|
swiglu = None |
|
|
|
try: |
|
from flash_attn.ops.fused_dense import ColumnParallelLinear, RowParallelLinear |
|
except ImportError: |
|
ColumnParallelLinear, RowParallelLinear = None, None |
|
|
|
try: |
|
from flash_attn.ops.fused_dense import FusedMLP, ParallelFusedMLP |
|
except ImportError: |
|
FusedMLP, ParallelFusedMLP = None, None |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
activation=F.gelu, |
|
bias1=True, |
|
bias2=True, |
|
return_residual=False, |
|
device=None, |
|
dtype=None, |
|
): |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
out_features = out_features if out_features is not None else in_features |
|
hidden_features = hidden_features if hidden_features is not None else in_features * 4 |
|
self.return_residual = return_residual |
|
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs) |
|
self.activation = activation |
|
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs) |
|
|
|
def forward(self, x, cu_adapter_mask=None): |
|
if cu_adapter_mask is not None: |
|
unique_tasks = torch.unique(cu_adapter_mask).tolist() |
|
fc1_dtype = next(self.fc1.parameters()).dtype |
|
y = torch.empty(x.shape[0], self.fc1.out_features, |
|
dtype=fc1_dtype).to(x.device) |
|
for task_id in unique_tasks: |
|
task_indices = (cu_adapter_mask == task_id).nonzero(as_tuple=True)[0] |
|
task_tensor = x[task_indices] |
|
task_y = self.fc1(task_tensor, task_id=task_id) |
|
y[task_indices] = task_y |
|
else: |
|
y = self.fc1(x) |
|
|
|
y = self.activation(y) |
|
|
|
if cu_adapter_mask is not None: |
|
unique_tasks = torch.unique(cu_adapter_mask).tolist() |
|
fc2_dtype = next(self.fc2.parameters()).dtype |
|
out = torch.empty(y.shape[0], self.fc2.out_features, |
|
dtype=fc2_dtype).to(y.device) |
|
for task_id in unique_tasks: |
|
task_indices = (cu_adapter_mask == task_id).nonzero(as_tuple=True)[0] |
|
task_tensor = y[task_indices] |
|
task_out = self.fc2(task_tensor, task_id=task_id) |
|
out[task_indices] = task_out |
|
else: |
|
out = self.fc1(y) |
|
|
|
return out if not self.return_residual else (out, x) |
|
|
|
|
|
class ParallelMLP(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
activation=F.gelu, |
|
process_group: ProcessGroup = None, |
|
sequence_parallel=True, |
|
bias1=True, |
|
bias2=True, |
|
device=None, |
|
dtype=None, |
|
): |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
assert ColumnParallelLinear is not None, "Need to install fused_dense" |
|
assert RowParallelLinear is not None, "Need to install fused_dense" |
|
out_features = out_features if out_features is not None else in_features |
|
hidden_features = hidden_features if hidden_features is not None else in_features * 4 |
|
self.fc1 = ColumnParallelLinear( |
|
in_features, |
|
hidden_features, |
|
process_group, |
|
bias=bias1, |
|
sequence_parallel=sequence_parallel, |
|
**factory_kwargs, |
|
) |
|
self.activation = activation |
|
self.fc2 = RowParallelLinear( |
|
hidden_features, |
|
out_features, |
|
process_group, |
|
bias=bias2, |
|
sequence_parallel=sequence_parallel, |
|
**factory_kwargs, |
|
) |
|
|
|
def forward(self, x): |
|
y = self.fc1(x) |
|
y = self.activation(y) |
|
y = self.fc2(y) |
|
return y |
|
|
|
|
|
class GatedMlp(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
activation=F.sigmoid, |
|
bias1=True, |
|
bias2=True, |
|
multiple_of=128, |
|
return_residual=False, |
|
device=None, |
|
dtype=None, |
|
): |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
out_features = out_features if out_features is not None else in_features |
|
hidden_features = ( |
|
hidden_features if hidden_features is not None else int(8 * in_features / 3) |
|
) |
|
hidden_features = (hidden_features + multiple_of - 1) // multiple_of * multiple_of |
|
self.return_residual = return_residual |
|
self.fc1 = nn.Linear(in_features, 2 * hidden_features, bias=bias1, **factory_kwargs) |
|
self.activation = activation |
|
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs) |
|
|
|
def forward(self, x): |
|
y = self.fc1(x) |
|
if self.activation == F.sigmoid: |
|
y = F.glu(y, dim=-1) |
|
elif self.activation == F.silu and swiglu is not None: |
|
y, gate = y.chunk(2, dim=-1) |
|
y = swiglu(gate, y) |
|
else: |
|
y, gate = y.chunk(2, dim=-1) |
|
y = y * self.activation(gate) |
|
y = self.fc2(y) |
|
return y if not self.return_residual else (y, x) |
|
|
|
|
|
class ParallelGatedMlp(nn.Module): |
|
"""Parallel GatedMlp""" |
|
|
|
def __init__( |
|
self, |
|
in_features, |
|
process_group, |
|
hidden_features=None, |
|
out_features=None, |
|
activation=F.sigmoid, |
|
bias1=True, |
|
bias2=True, |
|
multiple_of=128, |
|
sequence_parallel=True, |
|
device=None, |
|
dtype=None, |
|
): |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
out_features = out_features if out_features is not None else in_features |
|
hidden_features = ( |
|
hidden_features if hidden_features is not None else int(8 * in_features / 3) |
|
) |
|
hidden_features = (hidden_features + multiple_of - 1) // multiple_of * multiple_of |
|
if ColumnParallelLinear is None or RowParallelLinear is None: |
|
raise ImportError("fused_dense is not installed") |
|
self.fc1 = ColumnParallelLinear( |
|
in_features, |
|
2 * hidden_features, |
|
process_group, |
|
bias=bias1, |
|
sequence_parallel=sequence_parallel, |
|
**factory_kwargs, |
|
) |
|
self.activation = activation |
|
self.fc2 = RowParallelLinear( |
|
hidden_features, |
|
out_features, |
|
process_group, |
|
bias=bias2, |
|
sequence_parallel=sequence_parallel, |
|
**factory_kwargs, |
|
) |
|
|
|
def forward(self, x): |
|
y = self.fc1(x) |
|
if self.activation == F.sigmoid: |
|
y = F.glu(y, dim=-1) |
|
else: |
|
y, gate = y.chunk(2, dim=-1) |
|
y = y * self.activation(gate) |
|
y = self.fc2(y) |
|
return y |