File size: 6,957 Bytes
0e973a2 d3cae21 0e973a2 d3cae21 0e973a2 d3cae21 0e973a2 d3cae21 0e973a2 d3cae21 0e973a2 9cf3ad7 ed0eb73 9cf3ad7 0e973a2 d7aff03 d3cae21 0e973a2 38ca931 0e973a2 a05fa3e 3e36508 a05fa3e 0e973a2 a05fa3e 0e973a2 a05fa3e 3e36508 a05fa3e 15981ca d7aff03 0e973a2 a05fa3e 0e973a2 d7aff03 0e973a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
datasets:
- allenai/c4
language: en
inference: false
license: apache-2.0
---
<!-- TODO: add evaluation results here -->
<br><br>
<p align="center">
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>
<p align="center">
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
</p>
## Quick Start
The easiest way to starting using `jina-embeddings-v2-base-en` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/).
## Intended Usage & Model Info
`jina-embeddings-v2-base-code` is an multilingual **embedding model** speaks **English and 30 widely used programming languages**.
Same as other jina-embeddings-v2 series, it supports **8192** sequence length.
`jina-embeddings-v2-base-code` is based on a Bert architecture (JinaBert) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length.
The backbone `jina-bert-v2-base-code` is pretrained on the [github-code](https://huggingface.co/datasets/codeparrot/github-code) dataset.
The model is further trained on Jina AI's collection of more than 150 millions of coding question answer and docstring source code pairs.
These pairs were obtained from various domains and were carefully selected through a thorough cleaning process.
The embedding model was trained using 512 sequence length, but extrapolates to 8k sequence length (or even longer) thanks to ALiBi.
This makes our model useful for a range of use cases, especially when processing long documents is needed, including technical question answering and code search.
This model has 137 million parameters, which enables fast and memory efficient inference, while delivering impressive performance.
Additionally, we provide the following embedding models:
- [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters.
- [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters.
- [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): Chinese-English Bilingual embeddings.
- [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): German-English Bilingual embeddings.
- [`jina-embeddings-v2-base-es`](https://huggingface.co/jinaai/jina-embeddings-v2-base-es): Spanish-English Bilingual embeddings (soon).
**<details><summary>Supported (Programming) Languages</summary>**
<p>
- English
- Assembly
- Batchfile
- C
- C#
- C++
- CMake
- CSS
- Dockerfile
- FORTRAN
- GO
- Haskell
- HTML
- Java
- JavaScript
- Julia
- Lua
- Makefile
- Markdown
- PHP
- Perl
- PowerShell
- Python
- Ruby
- Rust
- SQL
- Scala
- Shell
- TypeScript
- TeX
- Visual Basic
</p>
</details>
## Data & Parameters
Jina Embeddings V2 [technical report](https://arxiv.org/abs/2310.19923)
## Usage
**<details><summary>Please apply mean pooling when integrating the model.</summary>**
<p>
### Why mean pooling?
`mean poooling` takes all token embeddings from model output and averaging them at sentence/paragraph level.
It has been proved to be the most effective way to produce high-quality sentence embeddings.
We offer an `encode` function to deal with this.
However, if you would like to do it without using the default `encode` function:
```python
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = [
'Save model to a pickle located at `path` with Python please',
'def save_act(self, path=None): if path is None: path = os.path.join(logger.get_dir(), "model.pkl") with tempfile.TemporaryDirectory() as td: save_variables(os.path.join(td, "model")) arc_name = os.path.join(td, "packed.zip") with zipfile.ZipFile(arc_name, "w") as zipf: for root, dirs, files in os.walk(td): for fname in files: file_path = os.path.join(root, fname) if file_path != arc_name: zipf.write(file_path, os.path.relpath(file_path, td)) with open(arc_name, "rb") as f: model_data = f.read() with open(path, "wb") as f: cloudpickle.dump((model_data, self._act_params), f)',
]
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-code')
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-code', trust_remote_code=True)
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
```
</p>
</details>
You can use Jina Embedding models directly from transformers package:
```python
!pip install transformers
from transformers import AutoModel
from numpy.linalg import norm
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-code', trust_remote_code=True)
embeddings = model.encode(
[
'Save model to a pickle located at `path` with Python please',
'def save_act(self, path=None): if path is None: path = os.path.join(logger.get_dir(), "model.pkl") with tempfile.TemporaryDirectory() as td: save_variables(os.path.join(td, "model")) arc_name = os.path.join(td, "packed.zip") with zipfile.ZipFile(arc_name, "w") as zipf: for root, dirs, files in os.walk(td): for fname in files: file_path = os.path.join(root, fname) if file_path != arc_name: zipf.write(file_path, os.path.relpath(file_path, td)) with open(arc_name, "rb") as f: model_data = f.read() with open(path, "wb") as f: cloudpickle.dump((model_data, self._act_params), f)',
]
)
print(cos_sim(embeddings[0], embeddings[1]))
>>> 0.7230249
```
If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function:
```python
embeddings = model.encode(
['Very long ... code'],
max_length=2048
)
```
## Plans
1. Bilingual embedding models supporting more European & Asian languages, including Spanish, French, Italian and Japanese.
2. Multimodal embedding models enable Multimodal RAG applications.
3. High-performt rerankers.
## Contact
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas. |