File size: 5,880 Bytes
6417422 a792bea 6417422 a792bea ea6cbd8 6417422 b9d7d6e aac6f27 6507fd6 aac6f27 b9d7d6e 6417422 0aaf6db 1d3913c 0aaf6db 1d3913c 0aaf6db 1f9045f 6417422 07d4bb6 6417422 a792bea 6417422 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
tags:
- feature-extraction
- sentence-similarity
- mteb
language: en
inference: false
license: apache-2.0
---
<!-- TODO: add evaluation results here -->
<br><br>
<p align="center">
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>
<p align="center">
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
</p>
## Quick Start
The easiest way to starting using `jina-clip-v1` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/).
## Intended Usage & Model Info
`jina-clip-v1` is an English, monolingual **multimodal (text-image) embedding model**.
Traditional text embedding models, such as [jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en),
excel in text-to-text retrieval but lack cross-modal retrieval capabilities.
Conversely, CLIP-like models, such as [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32),
align image embeddings with text embeddings but underperform in text-to-text retrieval due to their training methodology and context length limitations.
`jina-clip-v1` is an innovative **multimodal embedding model**.
Its text component achieves comparable performance to `jina-embeddings-v2-base-en` in text-to-text retrieval,
while the overall model delivers state-of-the-art performance in cross-modal retrieval tasks.
This makes it an ideal choice for multimodal retrieval-augmented generation (M-RAG) applications,
allowing for both text-to-text and text-to-image searches with a single model.
## Data & Parameters
`jina-clip-v1` [technical report]() coming soon.
## Usage
You can use Jina CLIP directly from transformers package.
```python
!pip install transformers einops timm pillow
from transformers import AutoModel
from numpy.linalg import norm
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
model = AutoModel.from_pretrained('jinaai/jina-clip-v1', trust_remote_code=True)
sentences = ['How is the weather today?', 'What is the current weather like today?']
images = ['raindrop.jpg', 'sunny.jpg']
text_embeddings = model.encode_text(sentences)
image_embeddings = model.encode_image(images)
print(cos_sim(text_embeddings[0], text_embeddings[1])) # text embedding similarity
print(cos_sim(text_embeddings[0], image_embeddings[0])) # text-image cross-modal similarity
```
**notice: our emperical study shows that text-text cosine similarity is normally larger than text-image cosine similarity!**
If you want to merge two scores, we recommended 2 ways:
1. weighted average of text-text sim and text-image sim:
```python
# pseudo code
alpha = 0.6
beta = 0.4
combined_scores = alpha * sim(query, document) + beta * sim(text, image)
```
2. apply z-score normalization before merging scores:
```python
# pseudo code
query_document_mean = np.mean(cos_sim_query_documents)
query_document_std = np.std(cos_sim_query_documents)
text_image_mean = np.mean(cos_sim_text_images)
text_image_std = np.std(cos_sim_text_images)
query_document_sim_normalized = (cos_sim_query_documents - query_document_mean) / query_document_std
text_image_sim_normalized = (cos_sim_text_images - text_image_mean) / text_image_std
```
## Performance
### Text-Image Retrieval
| Name | Flickr Image Retr. R@1 | Flickr Image Retr. R@5 | Flickr Text Retr. R@1 | Flickr Text Retr. R@5 |
|------------------|-------------------------|-------------------------|-----------------------|-----------------------|
| ViT-B-32 | 0.597 | 0.8398 | 0.781 | 0.938 |
| ViT-B-16 | 0.6216 | 0.8572 | 0.822 | 0.966 |
| jina-clip | 0.6748 | 0.8902 | 0.811 | 0.965 |
| Name | MSCOCO Image Retr. R@1 | MSCOCO Image Retr. R@5 | MSCOCO Text Retr. R@1 | MSCOCO Text Retr. R@5 |
|------------------|-------------------------|-------------------------|-----------------------|-----------------------|
| ViT-B-32 | 0.342 | 0.6001 | 0.5234 | 0.7634 |
| ViT-B-16 | 0.3309 | 0.5842 | 0.5242 | 0.767 |
| jina-clip | 0.4111 | 0.6644 | 0.5544 | 0.7904 |
### Text-Text Retrieval
| Name | STS12 | STS15 | STS17 | STS13 | STS14 | STS16 | STS22 | STSBenchmark | SummEval |
|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------------|----------|
| jina-embeddings-v2 | 0.7427 | 0.8755 | 0.8888 | 0.833 | 0.7917 | 0.836 | 0.6346 | 0.8404 | 0.3056 |
| jina-clip | 0.7352 | 0.8746 | 0.8976 | 0.8323 | 0.7868 | 0.8377 | 0.6583 | 0.8493 | 0.3048 |
| Name | ArguAna | FiQA2018 | NFCorpus | Quora | SCIDOCS | SciFact | TRECCOVID |
|--------------------|---------|----------|----------|-------|---------|---------|-----------|
| jina-embeddings-v2 | 0.4418 | 0.4158 | 0.3245 | 0.882 | 0.1986 | 0.6668 | 0.6591 |
| jina-clip | 0.4933 | 0.3827 | 0.3352 | 0.8789| 0.2024 | 0.6734 | 0.7161 |
## Contact
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
## Citation
If you find `jina-clip-v1` useful in your research, please cite the following paper:
```console
TBD
```
|