jilangdi commited on
Commit
2e08f91
1 Parent(s): 0047e0a

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,557 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:10000
10
+ - loss:SoftmaxLoss
11
+ base_model: google-bert/bert-base-uncased
12
+ datasets: []
13
+ metrics:
14
+ - pearson_cosine
15
+ - spearman_cosine
16
+ - pearson_manhattan
17
+ - spearman_manhattan
18
+ - pearson_euclidean
19
+ - spearman_euclidean
20
+ - pearson_dot
21
+ - spearman_dot
22
+ - pearson_max
23
+ - spearman_max
24
+ widget:
25
+ - source_sentence: A man selling donuts to a customer during a world exhibition event
26
+ held in the city of Angeles
27
+ sentences:
28
+ - The man is doing tricks.
29
+ - A woman drinks her coffee in a small cafe.
30
+ - The building is made of logs.
31
+ - source_sentence: A group of people prepare hot air balloons for takeoff.
32
+ sentences:
33
+ - There are hot air balloons on the ground and air.
34
+ - A man is in an art museum.
35
+ - People watch another person do a trick.
36
+ - source_sentence: Three workers are trimming down trees.
37
+ sentences:
38
+ - The goalie is sleeping at home.
39
+ - There are three workers
40
+ - The girl has brown hair.
41
+ - source_sentence: Two brown-haired men wearing short-sleeved shirts and shorts are
42
+ climbing stairs.
43
+ sentences:
44
+ - The men have blonde hair.
45
+ - A bicyclist passes an esthetically beautiful building on a sunny day
46
+ - Two men are dancing.
47
+ - source_sentence: A man is sitting in on the side of the street with brass pots.
48
+ sentences:
49
+ - a younger boy looks at his father
50
+ - Children are at the beach.
51
+ - a man does not have brass pots
52
+ pipeline_tag: sentence-similarity
53
+ co2_eq_emissions:
54
+ emissions: 147.28843774992524
55
+ energy_consumed: 0.2758298255748315
56
+ source: codecarbon
57
+ training_type: fine-tuning
58
+ on_cloud: false
59
+ cpu_model: AMD EPYC 7H12 64-Core Processor
60
+ ram_total_size: 229.14864349365234
61
+ hours_used: 0.351
62
+ hardware_used: 8 x NVIDIA GeForce RTX 3090
63
+ model-index:
64
+ - name: SentenceTransformer based on google-bert/bert-base-uncased
65
+ results:
66
+ - task:
67
+ type: semantic-similarity
68
+ name: Semantic Similarity
69
+ dataset:
70
+ name: sts dev
71
+ type: sts-dev
72
+ metrics:
73
+ - type: pearson_cosine
74
+ value: 0.47725003430658275
75
+ name: Pearson Cosine
76
+ - type: spearman_cosine
77
+ value: 0.5475746919034576
78
+ name: Spearman Cosine
79
+ - type: pearson_manhattan
80
+ value: 0.5043805022296893
81
+ name: Pearson Manhattan
82
+ - type: spearman_manhattan
83
+ value: 0.5420702830995872
84
+ name: Spearman Manhattan
85
+ - type: pearson_euclidean
86
+ value: 0.5083739540394052
87
+ name: Pearson Euclidean
88
+ - type: spearman_euclidean
89
+ value: 0.544209699690841
90
+ name: Spearman Euclidean
91
+ - type: pearson_dot
92
+ value: 0.4458579859528435
93
+ name: Pearson Dot
94
+ - type: spearman_dot
95
+ value: 0.4698642508787034
96
+ name: Spearman Dot
97
+ - type: pearson_max
98
+ value: 0.5083739540394052
99
+ name: Pearson Max
100
+ - type: spearman_max
101
+ value: 0.5475746919034576
102
+ name: Spearman Max
103
+ - task:
104
+ type: semantic-similarity
105
+ name: Semantic Similarity
106
+ dataset:
107
+ name: sts test
108
+ type: sts-test
109
+ metrics:
110
+ - type: pearson_cosine
111
+ value: 0.5320947494943107
112
+ name: Pearson Cosine
113
+ - type: spearman_cosine
114
+ value: 0.5317279446221387
115
+ name: Spearman Cosine
116
+ - type: pearson_manhattan
117
+ value: 0.5575308236485216
118
+ name: Pearson Manhattan
119
+ - type: spearman_manhattan
120
+ value: 0.5554390408837996
121
+ name: Spearman Manhattan
122
+ - type: pearson_euclidean
123
+ value: 0.55587770863865
124
+ name: Pearson Euclidean
125
+ - type: spearman_euclidean
126
+ value: 0.5535804159700501
127
+ name: Spearman Euclidean
128
+ - type: pearson_dot
129
+ value: 0.2787697886285483
130
+ name: Pearson Dot
131
+ - type: spearman_dot
132
+ value: 0.2710358104528421
133
+ name: Spearman Dot
134
+ - type: pearson_max
135
+ value: 0.5575308236485216
136
+ name: Pearson Max
137
+ - type: spearman_max
138
+ value: 0.5554390408837996
139
+ name: Spearman Max
140
+ - type: pearson_cosine
141
+ value: 0.4493844540252116
142
+ name: Pearson Cosine
143
+ - type: spearman_cosine
144
+ value: 0.4694611677633312
145
+ name: Spearman Cosine
146
+ - type: pearson_manhattan
147
+ value: 0.4773641092320219
148
+ name: Pearson Manhattan
149
+ - type: spearman_manhattan
150
+ value: 0.4763054309792941
151
+ name: Spearman Manhattan
152
+ - type: pearson_euclidean
153
+ value: 0.4796801942910325
154
+ name: Pearson Euclidean
155
+ - type: spearman_euclidean
156
+ value: 0.47774521406648734
157
+ name: Spearman Euclidean
158
+ - type: pearson_dot
159
+ value: 0.4081600817978359
160
+ name: Pearson Dot
161
+ - type: spearman_dot
162
+ value: 0.3898881150281674
163
+ name: Spearman Dot
164
+ - type: pearson_max
165
+ value: 0.4796801942910325
166
+ name: Pearson Max
167
+ - type: spearman_max
168
+ value: 0.47774521406648734
169
+ name: Spearman Max
170
+ ---
171
+
172
+ # SentenceTransformer based on google-bert/bert-base-uncased
173
+
174
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
175
+
176
+ ## Model Details
177
+
178
+ ### Model Description
179
+ - **Model Type:** Sentence Transformer
180
+ - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
181
+ - **Maximum Sequence Length:** 512 tokens
182
+ - **Output Dimensionality:** 768 tokens
183
+ - **Similarity Function:** Cosine Similarity
184
+ <!-- - **Training Dataset:** Unknown -->
185
+ <!-- - **Language:** Unknown -->
186
+ <!-- - **License:** Unknown -->
187
+
188
+ ### Model Sources
189
+
190
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
191
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
192
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
193
+
194
+ ### Full Model Architecture
195
+
196
+ ```
197
+ SentenceTransformer(
198
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
199
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
200
+ )
201
+ ```
202
+
203
+ ## Usage
204
+
205
+ ### Direct Usage (Sentence Transformers)
206
+
207
+ First install the Sentence Transformers library:
208
+
209
+ ```bash
210
+ pip install -U sentence-transformers
211
+ ```
212
+
213
+ Then you can load this model and run inference.
214
+ ```python
215
+ from sentence_transformers import SentenceTransformer
216
+
217
+ # Download from the 🤗 Hub
218
+ model = SentenceTransformer("jilangdi/bert-base-uncased-nli-v1")
219
+ # Run inference
220
+ sentences = [
221
+ 'A man is sitting in on the side of the street with brass pots.',
222
+ 'a man does not have brass pots',
223
+ 'Children are at the beach.',
224
+ ]
225
+ embeddings = model.encode(sentences)
226
+ print(embeddings.shape)
227
+ # [3, 768]
228
+
229
+ # Get the similarity scores for the embeddings
230
+ similarities = model.similarity(embeddings, embeddings)
231
+ print(similarities.shape)
232
+ # [3, 3]
233
+ ```
234
+
235
+ <!--
236
+ ### Direct Usage (Transformers)
237
+
238
+ <details><summary>Click to see the direct usage in Transformers</summary>
239
+
240
+ </details>
241
+ -->
242
+
243
+ <!--
244
+ ### Downstream Usage (Sentence Transformers)
245
+
246
+ You can finetune this model on your own dataset.
247
+
248
+ <details><summary>Click to expand</summary>
249
+
250
+ </details>
251
+ -->
252
+
253
+ <!--
254
+ ### Out-of-Scope Use
255
+
256
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
257
+ -->
258
+
259
+ ## Evaluation
260
+
261
+ ### Metrics
262
+
263
+ #### Semantic Similarity
264
+ * Dataset: `sts-dev`
265
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
266
+
267
+ | Metric | Value |
268
+ |:--------------------|:-----------|
269
+ | pearson_cosine | 0.4773 |
270
+ | **spearman_cosine** | **0.5476** |
271
+ | pearson_manhattan | 0.5044 |
272
+ | spearman_manhattan | 0.5421 |
273
+ | pearson_euclidean | 0.5084 |
274
+ | spearman_euclidean | 0.5442 |
275
+ | pearson_dot | 0.4459 |
276
+ | spearman_dot | 0.4699 |
277
+ | pearson_max | 0.5084 |
278
+ | spearman_max | 0.5476 |
279
+
280
+ #### Semantic Similarity
281
+ * Dataset: `sts-test`
282
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
283
+
284
+ | Metric | Value |
285
+ |:--------------------|:-----------|
286
+ | pearson_cosine | 0.5321 |
287
+ | **spearman_cosine** | **0.5317** |
288
+ | pearson_manhattan | 0.5575 |
289
+ | spearman_manhattan | 0.5554 |
290
+ | pearson_euclidean | 0.5559 |
291
+ | spearman_euclidean | 0.5536 |
292
+ | pearson_dot | 0.2788 |
293
+ | spearman_dot | 0.271 |
294
+ | pearson_max | 0.5575 |
295
+ | spearman_max | 0.5554 |
296
+
297
+ #### Semantic Similarity
298
+ * Dataset: `sts-test`
299
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
300
+
301
+ | Metric | Value |
302
+ |:--------------------|:-----------|
303
+ | pearson_cosine | 0.4494 |
304
+ | **spearman_cosine** | **0.4695** |
305
+ | pearson_manhattan | 0.4774 |
306
+ | spearman_manhattan | 0.4763 |
307
+ | pearson_euclidean | 0.4797 |
308
+ | spearman_euclidean | 0.4777 |
309
+ | pearson_dot | 0.4082 |
310
+ | spearman_dot | 0.3899 |
311
+ | pearson_max | 0.4797 |
312
+ | spearman_max | 0.4777 |
313
+
314
+ <!--
315
+ ## Bias, Risks and Limitations
316
+
317
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
318
+ -->
319
+
320
+ <!--
321
+ ### Recommendations
322
+
323
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
324
+ -->
325
+
326
+ ## Training Details
327
+
328
+ ### Training Dataset
329
+
330
+ #### Unnamed Dataset
331
+
332
+
333
+ * Size: 10,000 training samples
334
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
335
+ * Approximate statistics based on the first 1000 samples:
336
+ | | premise | hypothesis | label |
337
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------|
338
+ | type | string | string | int |
339
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.7 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
340
+ * Samples:
341
+ | premise | hypothesis | label |
342
+ |:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
343
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>1</code> |
344
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>2</code> |
345
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
346
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
347
+
348
+ ### Evaluation Dataset
349
+
350
+ #### Unnamed Dataset
351
+
352
+
353
+ * Size: 1,000 evaluation samples
354
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
355
+ * Approximate statistics based on the first 1000 samples:
356
+ | | premise | hypothesis | label |
357
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
358
+ | type | string | string | int |
359
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.44 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.57 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> |
360
+ * Samples:
361
+ | premise | hypothesis | label |
362
+ |:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------|
363
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>1</code> |
364
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>0</code> |
365
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code> | <code>2</code> |
366
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
367
+
368
+ ### Training Hyperparameters
369
+ #### Non-Default Hyperparameters
370
+
371
+ - `eval_strategy`: steps
372
+ - `per_device_train_batch_size`: 16
373
+ - `per_device_eval_batch_size`: 16
374
+ - `num_train_epochs`: 5
375
+ - `warmup_ratio`: 0.1
376
+ - `fp16`: True
377
+
378
+ #### All Hyperparameters
379
+ <details><summary>Click to expand</summary>
380
+
381
+ - `overwrite_output_dir`: False
382
+ - `do_predict`: False
383
+ - `eval_strategy`: steps
384
+ - `prediction_loss_only`: True
385
+ - `per_device_train_batch_size`: 16
386
+ - `per_device_eval_batch_size`: 16
387
+ - `per_gpu_train_batch_size`: None
388
+ - `per_gpu_eval_batch_size`: None
389
+ - `gradient_accumulation_steps`: 1
390
+ - `eval_accumulation_steps`: None
391
+ - `learning_rate`: 5e-05
392
+ - `weight_decay`: 0.0
393
+ - `adam_beta1`: 0.9
394
+ - `adam_beta2`: 0.999
395
+ - `adam_epsilon`: 1e-08
396
+ - `max_grad_norm`: 1.0
397
+ - `num_train_epochs`: 5
398
+ - `max_steps`: -1
399
+ - `lr_scheduler_type`: linear
400
+ - `lr_scheduler_kwargs`: {}
401
+ - `warmup_ratio`: 0.1
402
+ - `warmup_steps`: 0
403
+ - `log_level`: passive
404
+ - `log_level_replica`: warning
405
+ - `log_on_each_node`: True
406
+ - `logging_nan_inf_filter`: True
407
+ - `save_safetensors`: True
408
+ - `save_on_each_node`: False
409
+ - `save_only_model`: False
410
+ - `restore_callback_states_from_checkpoint`: False
411
+ - `no_cuda`: False
412
+ - `use_cpu`: False
413
+ - `use_mps_device`: False
414
+ - `seed`: 42
415
+ - `data_seed`: None
416
+ - `jit_mode_eval`: False
417
+ - `use_ipex`: False
418
+ - `bf16`: False
419
+ - `fp16`: True
420
+ - `fp16_opt_level`: O1
421
+ - `half_precision_backend`: auto
422
+ - `bf16_full_eval`: False
423
+ - `fp16_full_eval`: False
424
+ - `tf32`: None
425
+ - `local_rank`: 0
426
+ - `ddp_backend`: None
427
+ - `tpu_num_cores`: None
428
+ - `tpu_metrics_debug`: False
429
+ - `debug`: []
430
+ - `dataloader_drop_last`: False
431
+ - `dataloader_num_workers`: 0
432
+ - `dataloader_prefetch_factor`: None
433
+ - `past_index`: -1
434
+ - `disable_tqdm`: False
435
+ - `remove_unused_columns`: True
436
+ - `label_names`: None
437
+ - `load_best_model_at_end`: False
438
+ - `ignore_data_skip`: False
439
+ - `fsdp`: []
440
+ - `fsdp_min_num_params`: 0
441
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
442
+ - `fsdp_transformer_layer_cls_to_wrap`: None
443
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
444
+ - `deepspeed`: None
445
+ - `label_smoothing_factor`: 0.0
446
+ - `optim`: adamw_torch
447
+ - `optim_args`: None
448
+ - `adafactor`: False
449
+ - `group_by_length`: False
450
+ - `length_column_name`: length
451
+ - `ddp_find_unused_parameters`: None
452
+ - `ddp_bucket_cap_mb`: None
453
+ - `ddp_broadcast_buffers`: False
454
+ - `dataloader_pin_memory`: True
455
+ - `dataloader_persistent_workers`: False
456
+ - `skip_memory_metrics`: True
457
+ - `use_legacy_prediction_loop`: False
458
+ - `push_to_hub`: False
459
+ - `resume_from_checkpoint`: None
460
+ - `hub_model_id`: None
461
+ - `hub_strategy`: every_save
462
+ - `hub_private_repo`: False
463
+ - `hub_always_push`: False
464
+ - `gradient_checkpointing`: False
465
+ - `gradient_checkpointing_kwargs`: None
466
+ - `include_inputs_for_metrics`: False
467
+ - `eval_do_concat_batches`: True
468
+ - `fp16_backend`: auto
469
+ - `push_to_hub_model_id`: None
470
+ - `push_to_hub_organization`: None
471
+ - `mp_parameters`:
472
+ - `auto_find_batch_size`: False
473
+ - `full_determinism`: False
474
+ - `torchdynamo`: None
475
+ - `ray_scope`: last
476
+ - `ddp_timeout`: 1800
477
+ - `torch_compile`: False
478
+ - `torch_compile_backend`: None
479
+ - `torch_compile_mode`: None
480
+ - `dispatch_batches`: None
481
+ - `split_batches`: None
482
+ - `include_tokens_per_second`: False
483
+ - `include_num_input_tokens_seen`: False
484
+ - `neftune_noise_alpha`: None
485
+ - `optim_target_modules`: None
486
+ - `batch_eval_metrics`: False
487
+ - `batch_sampler`: batch_sampler
488
+ - `multi_dataset_batch_sampler`: proportional
489
+
490
+ </details>
491
+
492
+ ### Training Logs
493
+ | Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
494
+ |:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
495
+ | 0 | 0 | - | - | 0.5931 | - |
496
+ | 1.0 | 79 | - | - | - | 0.5317 |
497
+ | 1.2658 | 100 | 0.545 | 0.9351 | 0.5973 | - |
498
+ | 2.5316 | 200 | 0.5286 | 0.9535 | 0.5660 | - |
499
+ | 3.7975 | 300 | 0.3553 | 1.0364 | 0.5476 | - |
500
+ | 5.0 | 395 | - | - | - | 0.4695 |
501
+
502
+
503
+ ### Environmental Impact
504
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
505
+ - **Energy Consumed**: 0.276 kWh
506
+ - **Carbon Emitted**: 0.147 kg of CO2
507
+ - **Hours Used**: 0.351 hours
508
+
509
+ ### Training Hardware
510
+ - **On Cloud**: No
511
+ - **GPU Model**: 8 x NVIDIA GeForce RTX 3090
512
+ - **CPU Model**: AMD EPYC 7H12 64-Core Processor
513
+ - **RAM Size**: 229.15 GB
514
+
515
+ ### Framework Versions
516
+ - Python: 3.10.14
517
+ - Sentence Transformers: 3.0.1
518
+ - Transformers: 4.41.2
519
+ - PyTorch: 2.3.1+cu121
520
+ - Accelerate: 0.31.0
521
+ - Datasets: 2.19.2
522
+ - Tokenizers: 0.19.1
523
+
524
+ ## Citation
525
+
526
+ ### BibTeX
527
+
528
+ #### Sentence Transformers and SoftmaxLoss
529
+ ```bibtex
530
+ @inproceedings{reimers-2019-sentence-bert,
531
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
532
+ author = "Reimers, Nils and Gurevych, Iryna",
533
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
534
+ month = "11",
535
+ year = "2019",
536
+ publisher = "Association for Computational Linguistics",
537
+ url = "https://arxiv.org/abs/1908.10084",
538
+ }
539
+ ```
540
+
541
+ <!--
542
+ ## Glossary
543
+
544
+ *Clearly define terms in order to be accessible across audiences.*
545
+ -->
546
+
547
+ <!--
548
+ ## Model Card Authors
549
+
550
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
551
+ -->
552
+
553
+ <!--
554
+ ## Model Card Contact
555
+
556
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
557
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google-bert/bert-base-uncased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d424cea33c6f3cc78e6500be83f714817032e7da35c2fa879028fdda93859465
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff