Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
license: mit
|
3 |
---
|
4 |
|
5 |
-
This is a many-to-many model for Creole-English, English-Creole and Creole-Creole MT, fine-tuned on top of facebook/mbart-large-50-many-to-many-mmt
|
6 |
|
7 |
Usage:
|
8 |
|
@@ -10,13 +10,13 @@ Usage:
|
|
10 |
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
|
11 |
from transformers import MbartTokenizer, AutoTokenizer
|
12 |
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
14 |
|
15 |
-
# Or use tokenizer = MbartTokenizer.from_pretrained("
|
16 |
|
17 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("
|
18 |
|
19 |
-
# Or use model = MBartForConditionalGeneration.from_pretrained("
|
20 |
|
21 |
# First tokenize the input and outputs. The format below is how the model was trained so the input should be "Sentence </s> SRCCODE". Similarly, the output should be "TGTCODE Sentence </s>".
|
22 |
# Example: For Saint Lucian Patois to English translation, we need to use language indicator tags: <2acf> and <2eng> where acf represents Saint Lucian Patois and eng represents English.
|
|
|
2 |
license: mit
|
3 |
---
|
4 |
|
5 |
+
This is a many-to-many model for Creole-English, English-Creole and Creole-Creole MT, fine-tuned on top of `facebook/mbart-large-50-many-to-many-mmt`, with all data.
|
6 |
|
7 |
Usage:
|
8 |
|
|
|
10 |
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
|
11 |
from transformers import MbartTokenizer, AutoTokenizer
|
12 |
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/kreyol-mt", do_lower_case=False, use_fast=False, keep_accents=True)
|
14 |
|
15 |
+
# Or use tokenizer = MbartTokenizer.from_pretrained("jhu-clsp/kreyol-mt", use_fast=False)
|
16 |
|
17 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("jhu-clsp/kreyol-mt")
|
18 |
|
19 |
+
# Or use model = MBartForConditionalGeneration.from_pretrained("jhu-clsp/kreyol-mt")
|
20 |
|
21 |
# First tokenize the input and outputs. The format below is how the model was trained so the input should be "Sentence </s> SRCCODE". Similarly, the output should be "TGTCODE Sentence </s>".
|
22 |
# Example: For Saint Lucian Patois to English translation, we need to use language indicator tags: <2acf> and <2eng> where acf represents Saint Lucian Patois and eng represents English.
|