jhonparra18
commited on
Commit
•
4ef3f1d
1
Parent(s):
b52727d
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-300m-ft-soft-skill
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-300m-ft-soft-skill
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [glob-asr/xls-r-es-test-lm](https://huggingface.co/glob-asr/xls-r-es-test-lm) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.7447
|
20 |
+
- Accuracy: 0.6827
|
21 |
+
- F1 Micro: 0.3514
|
22 |
+
- F1 Macro: 0.6827
|
23 |
+
- Precision Micro: 0.6827
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 1e-05
|
43 |
+
- train_batch_size: 8
|
44 |
+
- eval_batch_size: 10
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 10
|
49 |
+
- num_epochs: 10
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | F1 Macro | Precision Micro |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:---------------:|
|
56 |
+
| 0.823 | 0.51 | 100 | 0.6821 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
|
57 |
+
| 0.7122 | 1.02 | 200 | 0.6767 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
|
58 |
+
| 0.6706 | 1.52 | 300 | 0.6768 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
|
59 |
+
| 0.7096 | 2.03 | 400 | 0.6791 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
|
60 |
+
| 0.6909 | 2.54 | 500 | 0.6780 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
|
61 |
+
| 0.6861 | 3.05 | 600 | 0.6779 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
|
62 |
+
| 0.6842 | 3.55 | 700 | 0.6773 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
|
63 |
+
| 0.6887 | 4.06 | 800 | 0.6764 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
|
64 |
+
| 0.6766 | 4.57 | 900 | 0.6803 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
|
65 |
+
| 0.6964 | 5.08 | 1000 | 0.6819 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
|
66 |
+
| 0.6515 | 5.58 | 1100 | 0.6788 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
|
67 |
+
| 0.6608 | 6.09 | 1200 | 0.6864 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
|
68 |
+
| 0.6171 | 6.6 | 1300 | 0.6980 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
|
69 |
+
| 0.6292 | 7.11 | 1400 | 0.7172 | 0.7386 | 0.3119 | 0.7386 | 0.7386 |
|
70 |
+
| 0.6015 | 7.61 | 1500 | 0.6988 | 0.7462 | 0.3212 | 0.7462 | 0.7462 |
|
71 |
+
| 0.6236 | 8.12 | 1600 | 0.7493 | 0.6954 | 0.3432 | 0.6954 | 0.6954 |
|
72 |
+
| 0.5643 | 8.63 | 1700 | 0.7250 | 0.7107 | 0.3466 | 0.7107 | 0.7107 |
|
73 |
+
| 0.6134 | 9.14 | 1800 | 0.7561 | 0.6751 | 0.3565 | 0.6751 | 0.6751 |
|
74 |
+
| 0.5642 | 9.64 | 1900 | 0.7447 | 0.6827 | 0.3514 | 0.6827 | 0.6827 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.21.3
|
80 |
+
- Pytorch 1.8.1+cu111
|
81 |
+
- Datasets 2.4.0
|
82 |
+
- Tokenizers 0.12.1
|