jhonparra18 commited on
Commit
4ef3f1d
1 Parent(s): b52727d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: wav2vec2-300m-ft-soft-skill
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-300m-ft-soft-skill
16
+
17
+ This model is a fine-tuned version of [glob-asr/xls-r-es-test-lm](https://huggingface.co/glob-asr/xls-r-es-test-lm) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.7447
20
+ - Accuracy: 0.6827
21
+ - F1 Micro: 0.3514
22
+ - F1 Macro: 0.6827
23
+ - Precision Micro: 0.6827
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 1e-05
43
+ - train_batch_size: 8
44
+ - eval_batch_size: 10
45
+ - seed: 42
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_steps: 10
49
+ - num_epochs: 10
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Micro | F1 Macro | Precision Micro |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:---------------:|
56
+ | 0.823 | 0.51 | 100 | 0.6821 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
57
+ | 0.7122 | 1.02 | 200 | 0.6767 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
58
+ | 0.6706 | 1.52 | 300 | 0.6768 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
59
+ | 0.7096 | 2.03 | 400 | 0.6791 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
60
+ | 0.6909 | 2.54 | 500 | 0.6780 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
61
+ | 0.6861 | 3.05 | 600 | 0.6779 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
62
+ | 0.6842 | 3.55 | 700 | 0.6773 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
63
+ | 0.6887 | 4.06 | 800 | 0.6764 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
64
+ | 0.6766 | 4.57 | 900 | 0.6803 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
65
+ | 0.6964 | 5.08 | 1000 | 0.6819 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
66
+ | 0.6515 | 5.58 | 1100 | 0.6788 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
67
+ | 0.6608 | 6.09 | 1200 | 0.6864 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
68
+ | 0.6171 | 6.6 | 1300 | 0.6980 | 0.7589 | 0.2876 | 0.7589 | 0.7589 |
69
+ | 0.6292 | 7.11 | 1400 | 0.7172 | 0.7386 | 0.3119 | 0.7386 | 0.7386 |
70
+ | 0.6015 | 7.61 | 1500 | 0.6988 | 0.7462 | 0.3212 | 0.7462 | 0.7462 |
71
+ | 0.6236 | 8.12 | 1600 | 0.7493 | 0.6954 | 0.3432 | 0.6954 | 0.6954 |
72
+ | 0.5643 | 8.63 | 1700 | 0.7250 | 0.7107 | 0.3466 | 0.7107 | 0.7107 |
73
+ | 0.6134 | 9.14 | 1800 | 0.7561 | 0.6751 | 0.3565 | 0.6751 | 0.6751 |
74
+ | 0.5642 | 9.64 | 1900 | 0.7447 | 0.6827 | 0.3514 | 0.6827 | 0.6827 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.21.3
80
+ - Pytorch 1.8.1+cu111
81
+ - Datasets 2.4.0
82
+ - Tokenizers 0.12.1