jh8416 commited on
Commit
b97ea2a
1 Parent(s): 0e21438

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,358 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: jhgan/ko-sroberta-multitask
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:43333
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: 교양과목 중간고사 기간 우리 수업 정상 녹화 수업 온라인 강의 게이미피케이션
16
+ sentences:
17
+ - 기술의 진보 score following live electronics 컴퓨터음악
18
+ - Analysis Site Survey 교양과목 중간시험 정상 수업 Programming Program Summary Program
19
+ - low anterior resection유인물 동영상수업PPT 음성해설 검사결과보고서 전사 영상의학검사결과보고서 abdpelvic CT
20
+ - source_sentence: 파이썬 내장 자료구조와 라이브러리 학습 파이썬의 대표적인
21
+ sentences:
22
+ - 개념들 평등 자유 국가 정의 계약 등 을 중심으로 진행되기 보다는
23
+ - 배열의 사칙연산 내장 수학함수의 사용법 조건문 관계연산자 가우스소거법
24
+ - 디지털 혁명과 함께 일어난 사회의 총체적 변화를 탈산업사회 및 네트워크 사회
25
+ - source_sentence: 특수교육 대상학생을 위한 교수학습 지원 개별화 교육 계획 IEP 교과지도 교수전략
26
+ sentences:
27
+ - 유아교육과정의 종류 장애 유아를 위한 개별화 교육과정의 구성 개별화 교육과정의 구조목표실행
28
+ - 및 평가 기초 조사강의 관련 요구 사항 등 과제나의 스포츠 연대기
29
+ - 주차에 실시할 수도 있겠음 동영상수업PPT 음성해설 GENERAL SURGERY subtotal hemithyroidectomy Rt
30
+ - source_sentence: 선형대수학을 조금 더 추상화한 벡터공간과 내적 공간에 대해 배운다
31
+ sentences:
32
+ - 나누어 공부하며 특히 인사관리는 인적자원 확보 개발 유지 보상 등을 포함한다
33
+ - 강의 OT 지구시스템의 표현 지구의 내적 작용 화산지진 지형의 형성 풍화매스
34
+ - 군비경쟁 중국의 시진핑 연임에 따른 군사력 강화핵무기 여기 보유 척의 항공모함
35
+ - source_sentence: 제공 예정 총정리 발표수업 및 환자 증례 연구 발표수업 및 환자
36
+ sentences:
37
+ - 제장 환경정책 목표와 방향 환경철학 정치체제 정부통제 시민참여 경제성장 의지 등
38
+ - 및 크리틱 과제 연구계획서 차 수정안 연구과제 중심 월 일 출력물
39
+ - 약물 경제 분석의 경제적 이론 환자 치료의 약물 경제 개념 이해
40
+ ---
41
+
42
+ # SentenceTransformer based on jhgan/ko-sroberta-multitask
43
+
44
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jhgan/ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** Sentence Transformer
50
+ - **Base model:** [jhgan/ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask) <!-- at revision ab957ae6a91e99c4cad36d52063a2a9cf1bf4419 -->
51
+ - **Maximum Sequence Length:** 128 tokens
52
+ - **Output Dimensionality:** 768 tokens
53
+ - **Similarity Function:** Cosine Similarity
54
+ <!-- - **Training Dataset:** Unknown -->
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
61
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
62
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
63
+
64
+ ### Full Model Architecture
65
+
66
+ ```
67
+ SentenceTransformer(
68
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
69
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
70
+ )
71
+ ```
72
+
73
+ ## Usage
74
+
75
+ ### Direct Usage (Sentence Transformers)
76
+
77
+ First install the Sentence Transformers library:
78
+
79
+ ```bash
80
+ pip install -U sentence-transformers
81
+ ```
82
+
83
+ Then you can load this model and run inference.
84
+ ```python
85
+ from sentence_transformers import SentenceTransformer
86
+
87
+ # Download from the 🤗 Hub
88
+ model = SentenceTransformer("jh8416/my_ewha_model_2024_1")
89
+ # Run inference
90
+ sentences = [
91
+ '제공 예정 총정리 발표수업 및 환자 증례 연구 발표수업 및 환자',
92
+ '약물 경제 분석의 경제적 이론 환자 치료의 약물 경제 개념 이해',
93
+ '제장 환경정책 목표와 방향 환경철학 정치체제 정부통제 시민참여 경제성장 의지 등',
94
+ ]
95
+ embeddings = model.encode(sentences)
96
+ print(embeddings.shape)
97
+ # [3, 768]
98
+
99
+ # Get the similarity scores for the embeddings
100
+ similarities = model.similarity(embeddings, embeddings)
101
+ print(similarities.shape)
102
+ # [3, 3]
103
+ ```
104
+
105
+ <!--
106
+ ### Direct Usage (Transformers)
107
+
108
+ <details><summary>Click to see the direct usage in Transformers</summary>
109
+
110
+ </details>
111
+ -->
112
+
113
+ <!--
114
+ ### Downstream Usage (Sentence Transformers)
115
+
116
+ You can finetune this model on your own dataset.
117
+
118
+ <details><summary>Click to expand</summary>
119
+
120
+ </details>
121
+ -->
122
+
123
+ <!--
124
+ ### Out-of-Scope Use
125
+
126
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
127
+ -->
128
+
129
+ <!--
130
+ ## Bias, Risks and Limitations
131
+
132
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
133
+ -->
134
+
135
+ <!--
136
+ ### Recommendations
137
+
138
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
139
+ -->
140
+
141
+ ## Training Details
142
+
143
+ ### Training Dataset
144
+
145
+ #### Unnamed Dataset
146
+
147
+
148
+ * Size: 43,333 training samples
149
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
150
+ * Approximate statistics based on the first 1000 samples:
151
+ | | sentence_0 | sentence_1 |
152
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
153
+ | type | string | string |
154
+ | details | <ul><li>min: 3 tokens</li><li>mean: 18.12 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 17.7 tokens</li><li>max: 46 tokens</li></ul> |
155
+ * Samples:
156
+ | sentence_0 | sentence_1 |
157
+ |:-----------------------------------------------------------|:-----------------------------------------------------------|
158
+ | <code>국가 비전 대집단체조와 예술공연 빛나는 조국 인민의 나라 분석 우리 국가제일주의의</code> | <code>토론 이동기 독일 통일된 조국 년 동독의 민주주의혁명과 통일문제의 관계</code> |
159
+ | <code>국가 비전 대집단체조와 예술공연 빛나는 조국 인민의 나라 분석 우리 국가제일주의의</code> | <code>대표 콘텐츠 대집단체조와 예술공연 빛나는 조국 관현악 빛나는 조국 가요 조국찬가</code> |
160
+ | <code>국가 비전 대집단체조와 예술공연 빛나는 조국 인민의 나라 분석 우리 국가제일주의의</code> | <code>사랑의 노래 람메르무어의 루치아 사랑과 조국 사이에서의 갈등 아이다 독일 오페라의</code> |
161
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
162
+ ```json
163
+ {
164
+ "scale": 20.0,
165
+ "similarity_fct": "cos_sim"
166
+ }
167
+ ```
168
+
169
+ ### Training Hyperparameters
170
+ #### Non-Default Hyperparameters
171
+
172
+ - `per_device_train_batch_size`: 16
173
+ - `per_device_eval_batch_size`: 16
174
+ - `num_train_epochs`: 1
175
+ - `multi_dataset_batch_sampler`: round_robin
176
+
177
+ #### All Hyperparameters
178
+ <details><summary>Click to expand</summary>
179
+
180
+ - `overwrite_output_dir`: False
181
+ - `do_predict`: False
182
+ - `eval_strategy`: no
183
+ - `prediction_loss_only`: True
184
+ - `per_device_train_batch_size`: 16
185
+ - `per_device_eval_batch_size`: 16
186
+ - `per_gpu_train_batch_size`: None
187
+ - `per_gpu_eval_batch_size`: None
188
+ - `gradient_accumulation_steps`: 1
189
+ - `eval_accumulation_steps`: None
190
+ - `torch_empty_cache_steps`: None
191
+ - `learning_rate`: 5e-05
192
+ - `weight_decay`: 0.0
193
+ - `adam_beta1`: 0.9
194
+ - `adam_beta2`: 0.999
195
+ - `adam_epsilon`: 1e-08
196
+ - `max_grad_norm`: 1
197
+ - `num_train_epochs`: 1
198
+ - `max_steps`: -1
199
+ - `lr_scheduler_type`: linear
200
+ - `lr_scheduler_kwargs`: {}
201
+ - `warmup_ratio`: 0.0
202
+ - `warmup_steps`: 0
203
+ - `log_level`: passive
204
+ - `log_level_replica`: warning
205
+ - `log_on_each_node`: True
206
+ - `logging_nan_inf_filter`: True
207
+ - `save_safetensors`: True
208
+ - `save_on_each_node`: False
209
+ - `save_only_model`: False
210
+ - `restore_callback_states_from_checkpoint`: False
211
+ - `no_cuda`: False
212
+ - `use_cpu`: False
213
+ - `use_mps_device`: False
214
+ - `seed`: 42
215
+ - `data_seed`: None
216
+ - `jit_mode_eval`: False
217
+ - `use_ipex`: False
218
+ - `bf16`: False
219
+ - `fp16`: False
220
+ - `fp16_opt_level`: O1
221
+ - `half_precision_backend`: auto
222
+ - `bf16_full_eval`: False
223
+ - `fp16_full_eval`: False
224
+ - `tf32`: None
225
+ - `local_rank`: 0
226
+ - `ddp_backend`: None
227
+ - `tpu_num_cores`: None
228
+ - `tpu_metrics_debug`: False
229
+ - `debug`: []
230
+ - `dataloader_drop_last`: False
231
+ - `dataloader_num_workers`: 0
232
+ - `dataloader_prefetch_factor`: None
233
+ - `past_index`: -1
234
+ - `disable_tqdm`: False
235
+ - `remove_unused_columns`: True
236
+ - `label_names`: None
237
+ - `load_best_model_at_end`: False
238
+ - `ignore_data_skip`: False
239
+ - `fsdp`: []
240
+ - `fsdp_min_num_params`: 0
241
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
242
+ - `fsdp_transformer_layer_cls_to_wrap`: None
243
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
244
+ - `deepspeed`: None
245
+ - `label_smoothing_factor`: 0.0
246
+ - `optim`: adamw_torch
247
+ - `optim_args`: None
248
+ - `adafactor`: False
249
+ - `group_by_length`: False
250
+ - `length_column_name`: length
251
+ - `ddp_find_unused_parameters`: None
252
+ - `ddp_bucket_cap_mb`: None
253
+ - `ddp_broadcast_buffers`: False
254
+ - `dataloader_pin_memory`: True
255
+ - `dataloader_persistent_workers`: False
256
+ - `skip_memory_metrics`: True
257
+ - `use_legacy_prediction_loop`: False
258
+ - `push_to_hub`: False
259
+ - `resume_from_checkpoint`: None
260
+ - `hub_model_id`: None
261
+ - `hub_strategy`: every_save
262
+ - `hub_private_repo`: False
263
+ - `hub_always_push`: False
264
+ - `gradient_checkpointing`: False
265
+ - `gradient_checkpointing_kwargs`: None
266
+ - `include_inputs_for_metrics`: False
267
+ - `eval_do_concat_batches`: True
268
+ - `fp16_backend`: auto
269
+ - `push_to_hub_model_id`: None
270
+ - `push_to_hub_organization`: None
271
+ - `mp_parameters`:
272
+ - `auto_find_batch_size`: False
273
+ - `full_determinism`: False
274
+ - `torchdynamo`: None
275
+ - `ray_scope`: last
276
+ - `ddp_timeout`: 1800
277
+ - `torch_compile`: False
278
+ - `torch_compile_backend`: None
279
+ - `torch_compile_mode`: None
280
+ - `dispatch_batches`: None
281
+ - `split_batches`: None
282
+ - `include_tokens_per_second`: False
283
+ - `include_num_input_tokens_seen`: False
284
+ - `neftune_noise_alpha`: None
285
+ - `optim_target_modules`: None
286
+ - `batch_eval_metrics`: False
287
+ - `eval_on_start`: False
288
+ - `eval_use_gather_object`: False
289
+ - `batch_sampler`: batch_sampler
290
+ - `multi_dataset_batch_sampler`: round_robin
291
+
292
+ </details>
293
+
294
+ ### Training Logs
295
+ | Epoch | Step | Training Loss |
296
+ |:------:|:----:|:-------------:|
297
+ | 0.1846 | 500 | 0.8337 |
298
+ | 0.3691 | 1000 | 0.3327 |
299
+ | 0.5537 | 1500 | 0.2449 |
300
+ | 0.7383 | 2000 | 0.1925 |
301
+ | 0.9228 | 2500 | 0.1637 |
302
+
303
+
304
+ ### Framework Versions
305
+ - Python: 3.12.0
306
+ - Sentence Transformers: 3.0.1
307
+ - Transformers: 4.43.3
308
+ - PyTorch: 2.4.0+cu121
309
+ - Accelerate: 0.33.0
310
+ - Datasets: 2.20.0
311
+ - Tokenizers: 0.19.1
312
+
313
+ ## Citation
314
+
315
+ ### BibTeX
316
+
317
+ #### Sentence Transformers
318
+ ```bibtex
319
+ @inproceedings{reimers-2019-sentence-bert,
320
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
321
+ author = "Reimers, Nils and Gurevych, Iryna",
322
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
323
+ month = "11",
324
+ year = "2019",
325
+ publisher = "Association for Computational Linguistics",
326
+ url = "https://arxiv.org/abs/1908.10084",
327
+ }
328
+ ```
329
+
330
+ #### MultipleNegativesRankingLoss
331
+ ```bibtex
332
+ @misc{henderson2017efficient,
333
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
334
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
335
+ year={2017},
336
+ eprint={1705.00652},
337
+ archivePrefix={arXiv},
338
+ primaryClass={cs.CL}
339
+ }
340
+ ```
341
+
342
+ <!--
343
+ ## Glossary
344
+
345
+ *Clearly define terms in order to be accessible across audiences.*
346
+ -->
347
+
348
+ <!--
349
+ ## Model Card Authors
350
+
351
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
352
+ -->
353
+
354
+ <!--
355
+ ## Model Card Contact
356
+
357
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
358
+ -->
added_tokens.json ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "my_trained_univ_model",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.43.3",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 40525
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.43.3",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f55b3b1c435fbed1c12768fd4156ece67b204387b22cbdf48a7a22a5c7b7f3dd
3
+ size 468683624
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
vocab.txt ADDED
The diff for this file is too large to render. See raw diff