File size: 2,254 Bytes
694339c 74c99b4 694339c b177a44 694339c 22d9b03 694339c 22d9b03 694339c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets: jgammack/SAE-door-abstracts
widget:
- text: Wind [MASK] was detected coming from the car door closure system.
example_title: Closure system
model-index:
- name: SAE-bert-base-uncased
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SAE-bert-base-uncased
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the [jgammack/SAE-door-abstracts](https://huggingface.co/datasets/jgammack/SAE-door-abstracts) dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1256
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 7
- eval_batch_size: 7
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.5967 | 1.0 | 80 | 2.3409 |
| 2.4881 | 2.0 | 160 | 2.2707 |
| 2.3567 | 3.0 | 240 | 2.3134 |
| 2.3413 | 4.0 | 320 | 2.2592 |
| 2.3006 | 5.0 | 400 | 2.2351 |
| 2.2568 | 6.0 | 480 | 2.2556 |
| 2.2303 | 7.0 | 560 | 2.2546 |
| 2.1892 | 8.0 | 640 | 2.1868 |
| 2.1851 | 9.0 | 720 | 2.2073 |
| 2.1738 | 10.0 | 800 | 2.1344 |
| 2.1673 | 11.0 | 880 | 2.1927 |
| 2.1518 | 12.0 | 960 | 2.1844 |
| 2.1142 | 13.0 | 1040 | 2.1466 |
| 2.1343 | 14.0 | 1120 | 2.2024 |
| 2.1332 | 15.0 | 1200 | 2.1035 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|