huynhdoo commited on
Commit
ea827cf
1 Parent(s): 3e66650

pushing model RF with camember base embeddings

Browse files
Files changed (4) hide show
  1. README.md +130 -0
  2. config.json +19 -0
  3. confusion_matrix.png +0 -0
  4. skops-ngrzbpwh.pkl +3 -0
README.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: sklearn
4
+ tags:
5
+ - sklearn
6
+ - skops
7
+ - text-classification
8
+ model_format: pickle
9
+ model_file: skops-ngrzbpwh.pkl
10
+ ---
11
+
12
+ # Model description
13
+
14
+ This is a `Support Vector Classifier` model trained on JeVeuxAider dataset. As input, the model takes text embeddings encoded with camembert-base (768 tokens)
15
+
16
+ ## Intended uses & limitations
17
+
18
+ This model is not ready to be used in production.
19
+
20
+ ## Training Procedure
21
+
22
+ [More Information Needed]
23
+
24
+ ### Hyperparameters
25
+
26
+ <details>
27
+ <summary> Click to expand </summary>
28
+
29
+ | Hyperparameter | Value |
30
+ |---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
31
+ | memory | |
32
+ | steps | [('columntransformer', ColumnTransformer(transformers=[('num',<br /> Pipeline(steps=[('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler()),<br /> ('pca',<br /> PCA(n_components=689))]),<br /> Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8',<br /> 'avg_9', 'avg_10',<br /> ...<br /> 'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764',<br /> 'max_765', 'max_766', 'max_767', 'max_768'],<br /> dtype='object', length=2304))],<br /> verbose_feature_names_out=False)), ('randomforestclassifier', RandomForestClassifier(max_depth=15, max_features=20, min_samples_split=10,<br /> random_state=42))] |
33
+ | verbose | False |
34
+ | columntransformer | ColumnTransformer(transformers=[('num',<br /> Pipeline(steps=[('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler()),<br /> ('pca',<br /> PCA(n_components=689))]),<br /> Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8',<br /> 'avg_9', 'avg_10',<br /> ...<br /> 'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764',<br /> 'max_765', 'max_766', 'max_767', 'max_768'],<br /> dtype='object', length=2304))],<br /> verbose_feature_names_out=False) |
35
+ | randomforestclassifier | RandomForestClassifier(max_depth=15, max_features=20, min_samples_split=10,<br /> random_state=42) |
36
+ | columntransformer__n_jobs | |
37
+ | columntransformer__remainder | drop |
38
+ | columntransformer__sparse_threshold | 0.3 |
39
+ | columntransformer__transformer_weights | |
40
+ | columntransformer__transformers | [('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler()), ('pca', PCA(n_components=689))]), Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8',<br /> 'avg_9', 'avg_10',<br /> ...<br /> 'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764',<br /> 'max_765', 'max_766', 'max_767', 'max_768'],<br /> dtype='object', length=2304))] |
41
+ | columntransformer__verbose | False |
42
+ | columntransformer__verbose_feature_names_out | False |
43
+ | columntransformer__num | Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler()), ('pca', PCA(n_components=689))]) |
44
+ | columntransformer__num__memory | |
45
+ | columntransformer__num__steps | [('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()), ('pca', PCA(n_components=689))] |
46
+ | columntransformer__num__verbose | False |
47
+ | columntransformer__num__imputer | SimpleImputer(strategy='median') |
48
+ | columntransformer__num__scaler | StandardScaler() |
49
+ | columntransformer__num__pca | PCA(n_components=689) |
50
+ | columntransformer__num__imputer__add_indicator | False |
51
+ | columntransformer__num__imputer__copy | True |
52
+ | columntransformer__num__imputer__fill_value | |
53
+ | columntransformer__num__imputer__keep_empty_features | False |
54
+ | columntransformer__num__imputer__missing_values | nan |
55
+ | columntransformer__num__imputer__strategy | median |
56
+ | columntransformer__num__imputer__verbose | deprecated |
57
+ | columntransformer__num__scaler__copy | True |
58
+ | columntransformer__num__scaler__with_mean | True |
59
+ | columntransformer__num__scaler__with_std | True |
60
+ | columntransformer__num__pca__copy | True |
61
+ | columntransformer__num__pca__iterated_power | auto |
62
+ | columntransformer__num__pca__n_components | 689 |
63
+ | columntransformer__num__pca__n_oversamples | 10 |
64
+ | columntransformer__num__pca__power_iteration_normalizer | auto |
65
+ | columntransformer__num__pca__random_state | |
66
+ | columntransformer__num__pca__svd_solver | auto |
67
+ | columntransformer__num__pca__tol | 0.0 |
68
+ | columntransformer__num__pca__whiten | False |
69
+ | randomforestclassifier__bootstrap | True |
70
+ | randomforestclassifier__ccp_alpha | 0.0 |
71
+ | randomforestclassifier__class_weight | |
72
+ | randomforestclassifier__criterion | gini |
73
+ | randomforestclassifier__max_depth | 15 |
74
+ | randomforestclassifier__max_features | 20 |
75
+ | randomforestclassifier__max_leaf_nodes | |
76
+ | randomforestclassifier__max_samples | |
77
+ | randomforestclassifier__min_impurity_decrease | 0.0 |
78
+ | randomforestclassifier__min_samples_leaf | 1 |
79
+ | randomforestclassifier__min_samples_split | 10 |
80
+ | randomforestclassifier__min_weight_fraction_leaf | 0.0 |
81
+ | randomforestclassifier__n_estimators | 100 |
82
+ | randomforestclassifier__n_jobs | |
83
+ | randomforestclassifier__oob_score | False |
84
+ | randomforestclassifier__random_state | 42 |
85
+ | randomforestclassifier__verbose | 0 |
86
+ | randomforestclassifier__warm_start | False |
87
+
88
+ </details>
89
+
90
+ ### Model Plot
91
+
92
+ <style>#sk-container-id-3 {color: black;background-color: white;}#sk-container-id-3 pre{padding: 0;}#sk-container-id-3 div.sk-toggleable {background-color: white;}#sk-container-id-3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-3 div.sk-item {position: relative;z-index: 1;}#sk-container-id-3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-3 div.sk-item::before, #sk-container-id-3 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-3 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-3 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-3 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-3 div.sk-label-container {text-align: center;}#sk-container-id-3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;num&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;,StandardScaler()),(&#x27;pca&#x27;,PCA(n_components=689))]),Index([&#x27;avg_1&#x27;, &#x27;avg_2&#x27;, &#x27;avg_3&#x27;, &#x27;avg_4&#x27;, &#x27;avg_5&#x27;, &#x27;avg_6&#x27;, &#x27;avg_7&#x27;, &#x27;avg_8&#x27;,&#x27;avg_9&#x27;, &#x27;avg_10&#x27;,...&#x27;max_759&#x27;, &#x27;max_760&#x27;, &#x27;max_761&#x27;, &#x27;max_762&#x27;, &#x27;max_763&#x27;, &#x27;max_764&#x27;,&#x27;max_765&#x27;, &#x27;max_766&#x27;, &#x27;max_767&#x27;, &#x27;max_768&#x27;],dtype=&#x27;object&#x27;, length=2304))],verbose_feature_names_out=False)),(&#x27;randomforestclassifier&#x27;,RandomForestClassifier(max_depth=15, max_features=20,min_samples_split=10,random_state=42))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-11" type="checkbox" ><label for="sk-estimator-id-11" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;num&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;,StandardScaler()),(&#x27;pca&#x27;,PCA(n_components=689))]),Index([&#x27;avg_1&#x27;, &#x27;avg_2&#x27;, &#x27;avg_3&#x27;, &#x27;avg_4&#x27;, &#x27;avg_5&#x27;, &#x27;avg_6&#x27;, &#x27;avg_7&#x27;, &#x27;avg_8&#x27;,&#x27;avg_9&#x27;, &#x27;avg_10&#x27;,...&#x27;max_759&#x27;, &#x27;max_760&#x27;, &#x27;max_761&#x27;, &#x27;max_762&#x27;, &#x27;max_763&#x27;, &#x27;max_764&#x27;,&#x27;max_765&#x27;, &#x27;max_766&#x27;, &#x27;max_767&#x27;, &#x27;max_768&#x27;],dtype=&#x27;object&#x27;, length=2304))],verbose_feature_names_out=False)),(&#x27;randomforestclassifier&#x27;,RandomForestClassifier(max_depth=15, max_features=20,min_samples_split=10,random_state=42))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-12" type="checkbox" ><label for="sk-estimator-id-12" class="sk-toggleable__label sk-toggleable__label-arrow">columntransformer: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;num&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;, StandardScaler()),(&#x27;pca&#x27;,PCA(n_components=689))]),Index([&#x27;avg_1&#x27;, &#x27;avg_2&#x27;, &#x27;avg_3&#x27;, &#x27;avg_4&#x27;, &#x27;avg_5&#x27;, &#x27;avg_6&#x27;, &#x27;avg_7&#x27;, &#x27;avg_8&#x27;,&#x27;avg_9&#x27;, &#x27;avg_10&#x27;,...&#x27;max_759&#x27;, &#x27;max_760&#x27;, &#x27;max_761&#x27;, &#x27;max_762&#x27;, &#x27;max_763&#x27;, &#x27;max_764&#x27;,&#x27;max_765&#x27;, &#x27;max_766&#x27;, &#x27;max_767&#x27;, &#x27;max_768&#x27;],dtype=&#x27;object&#x27;, length=2304))],verbose_feature_names_out=False)</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-13" type="checkbox" ><label for="sk-estimator-id-13" class="sk-toggleable__label sk-toggleable__label-arrow">num</label><div class="sk-toggleable__content"><pre>Index([&#x27;avg_1&#x27;, &#x27;avg_2&#x27;, &#x27;avg_3&#x27;, &#x27;avg_4&#x27;, &#x27;avg_5&#x27;, &#x27;avg_6&#x27;, &#x27;avg_7&#x27;, &#x27;avg_8&#x27;,&#x27;avg_9&#x27;, &#x27;avg_10&#x27;,...&#x27;max_759&#x27;, &#x27;max_760&#x27;, &#x27;max_761&#x27;, &#x27;max_762&#x27;, &#x27;max_763&#x27;, &#x27;max_764&#x27;,&#x27;max_765&#x27;, &#x27;max_766&#x27;, &#x27;max_767&#x27;, &#x27;max_768&#x27;],dtype=&#x27;object&#x27;, length=2304)</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-14" type="checkbox" ><label for="sk-estimator-id-14" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer(strategy=&#x27;median&#x27;)</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-15" type="checkbox" ><label for="sk-estimator-id-15" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-16" type="checkbox" ><label for="sk-estimator-id-16" class="sk-toggleable__label sk-toggleable__label-arrow">PCA</label><div class="sk-toggleable__content"><pre>PCA(n_components=689)</pre></div></div></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-17" type="checkbox" ><label for="sk-estimator-id-17" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier(max_depth=15, max_features=20, min_samples_split=10,random_state=42)</pre></div></div></div></div></div></div></div>
93
+
94
+ ## Evaluation Results
95
+
96
+ | Metric | Value |
97
+ |----------|----------|
98
+ | accuracy | 0.964661 |
99
+ | f1 score | 0.964637 |
100
+
101
+ ### Confusion Matrix
102
+
103
+ ![Confusion Matrix](confusion_matrix.png)
104
+
105
+ # How to Get Started with the Model
106
+
107
+ [More Information Needed]
108
+
109
+ # Model Card Authors
110
+
111
+ huynhdoo
112
+
113
+ # Model Card Contact
114
+
115
+ You can contact the model card authors through following channels:
116
+ [More Information Needed]
117
+
118
+ # Citation
119
+
120
+ **BibTeX**
121
+
122
+ ```
123
+ @inproceedings{...,year={2023}}
124
+ ```
125
+
126
+ # get_started_code
127
+
128
+ import pickle as pickle
129
+ with open(pkl_filename, 'rb') as file:
130
+ pipe = pickle.load(file)
config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "environment": [
4
+ "scikit-learn=1.2.2"
5
+ ],
6
+ "example_input": {
7
+ "data": [
8
+ "",
9
+ ""
10
+ ]
11
+ },
12
+ "model": {
13
+ "file": "skops-ngrzbpwh.pkl"
14
+ },
15
+ "model_format": "pickle",
16
+ "task": "text-classification",
17
+ "use_intelex": false
18
+ }
19
+ }
confusion_matrix.png ADDED
skops-ngrzbpwh.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d347ae8520d1883473a8e4c6742afb6c7cb3b4a80870f131baf2115f53aa1e03
3
+ size 11584737