Add sweeper script for finding optimal generation hyperparameters.
Browse files
sweep.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from random import shuffle
|
3 |
+
|
4 |
+
import torchaudio
|
5 |
+
|
6 |
+
from api import TextToSpeech
|
7 |
+
from utils.audio import load_audio
|
8 |
+
|
9 |
+
|
10 |
+
def permutations(args):
|
11 |
+
res = []
|
12 |
+
k = next(iter(args.keys()))
|
13 |
+
vals = args[k]
|
14 |
+
del args[k]
|
15 |
+
if not args:
|
16 |
+
return [{k: v} for v in vals]
|
17 |
+
lower = permutations(args)
|
18 |
+
for v in vals:
|
19 |
+
for l in lower:
|
20 |
+
lc = l.copy()
|
21 |
+
lc[k] = v
|
22 |
+
res.append(lc)
|
23 |
+
return res
|
24 |
+
|
25 |
+
|
26 |
+
if __name__ == '__main__':
|
27 |
+
fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
|
28 |
+
outpath_base = 'D:\\tmp\\tortoise-tts-eval\\std_sweep_diffusion'
|
29 |
+
outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'
|
30 |
+
|
31 |
+
arg_ranges = {
|
32 |
+
'diffusion_temperature': [.5, .7, 1],
|
33 |
+
'cond_free_k': [.5, 1, 2],
|
34 |
+
}
|
35 |
+
cfgs = permutations(arg_ranges)
|
36 |
+
shuffle(cfgs)
|
37 |
+
|
38 |
+
for cfg in cfgs:
|
39 |
+
outpath = os.path.join(outpath_base, f'{cfg["cond_free_k"]}_{cfg["diffusion_temperature"]}')
|
40 |
+
os.makedirs(outpath, exist_ok=True)
|
41 |
+
os.makedirs(outpath_real, exist_ok=True)
|
42 |
+
with open(fname, 'r', encoding='utf-8') as f:
|
43 |
+
lines = [l.strip().split('\t') for l in f.readlines()]
|
44 |
+
|
45 |
+
recorder = open(os.path.join(outpath, 'transcript.tsv'), 'w', encoding='utf-8')
|
46 |
+
tts = TextToSpeech()
|
47 |
+
for e, line in enumerate(lines):
|
48 |
+
transcript = line[0]
|
49 |
+
if len(transcript) > 120:
|
50 |
+
continue # We need to support this, but cannot yet.
|
51 |
+
path = os.path.join(os.path.dirname(fname), line[1])
|
52 |
+
cond_audio = load_audio(path, 22050)
|
53 |
+
torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
|
54 |
+
sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=256, k=1, diffusion_iterations=200, cond_free=False,
|
55 |
+
repetition_penalty=1.5, length_penalty=2, temperature=.9, top_p=.9)
|
56 |
+
down = torchaudio.functional.resample(sample, 24000, 22050)
|
57 |
+
fout_path = os.path.join(outpath, os.path.basename(line[1]))
|
58 |
+
torchaudio.save(fout_path, down.squeeze(0), 22050)
|
59 |
+
recorder.write(f'{transcript}\t{fout_path}\n')
|
60 |
+
recorder.flush()
|
61 |
+
recorder.close()
|