jbetker commited on
Commit
1a2fb5d
1 Parent(s): c34f5ed

Update docs

Browse files
Files changed (3) hide show
  1. README.md +7 -1
  2. do_tts.py +107 -89
  3. utils/audio.py +2 -0
README.md CHANGED
@@ -14,19 +14,25 @@ expect ~5 seconds of speech to take ~30 seconds to produce on the latest hardwar
14
 
15
  ## What the heck is this?
16
 
17
- Tortoise TTS is inspired by OpenAI's DALLE, applied to speech data. It is made up of 4 separate models that work together:
 
 
18
 
19
  First, an autoregressive transformer stack predicts discrete speech "tokens" given a text prompt. This model is very
20
  similar to the GPT model used by DALLE, except it operates on speech data.
 
21
 
22
  Next, a CLIP model judges a batch of outputs from the autoregressive transformer against the provided text and stack
23
  ranks the outputs according to most probable. You could use greedy or beam-search decoding but in my experience CLIP
24
  decoding creates considerably better results.
 
25
 
26
  Next, the speech "tokens" are decoded into a low-quality MEL spectrogram using a VQVAE.
 
27
 
28
  Finally, the output of the VQVAE is further decoded by a UNet diffusion model into raw audio, which can be placed in
29
  a wav file.
 
30
 
31
  ## How do I use this?
32
 
 
14
 
15
  ## What the heck is this?
16
 
17
+ Tortoise TTS is inspired by OpenAI's DALLE, applied to speech data. It is made up of 4 separate models that work together.
18
+ These models are all derived from different repositories which are all linked. All the models have been modified
19
+ for this use case (some substantially so).
20
 
21
  First, an autoregressive transformer stack predicts discrete speech "tokens" given a text prompt. This model is very
22
  similar to the GPT model used by DALLE, except it operates on speech data.
23
+ Based on: [GPT2 from Transformers](https://huggingface.co/docs/transformers/model_doc/gpt2)
24
 
25
  Next, a CLIP model judges a batch of outputs from the autoregressive transformer against the provided text and stack
26
  ranks the outputs according to most probable. You could use greedy or beam-search decoding but in my experience CLIP
27
  decoding creates considerably better results.
28
+ Based on [CLIP from lucidrains](https://github.com/lucidrains/DALLE-pytorch/blob/main/dalle_pytorch/dalle_pytorch.py)
29
 
30
  Next, the speech "tokens" are decoded into a low-quality MEL spectrogram using a VQVAE.
31
+ Based on [VQVAE2 by rosinality](https://github.com/rosinality/vq-vae-2-pytorch)
32
 
33
  Finally, the output of the VQVAE is further decoded by a UNet diffusion model into raw audio, which can be placed in
34
  a wav file.
35
+ Based on [ImprovedDiffusion by openai](https://github.com/openai/improved-diffusion)
36
 
37
  ## How do I use this?
38
 
do_tts.py CHANGED
@@ -25,25 +25,7 @@ def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusi
25
  model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps))
26
 
27
 
28
- def do_spectrogram_diffusion(diffusion_model, dvae_model, diffuser, mel_codes, conditioning_input, spectrogram_compression_factor=128):
29
- """
30
- Uses the specified diffusion model and DVAE model to convert the provided MEL & conditioning inputs into an audio clip.
31
- """
32
- with torch.no_grad():
33
- mel = dvae_model.decode(mel_codes)[0]
34
-
35
- # Pad MEL to multiples of 2048//spectrogram_compression_factor
36
- msl = mel.shape[-1]
37
- dsl = 2048 // spectrogram_compression_factor
38
- gap = dsl - (msl % dsl)
39
- if gap > 0:
40
- mel = torch.nn.functional.pad(mel, (0, gap))
41
-
42
- output_shape = (mel.shape[0], 1, mel.shape[-1] * spectrogram_compression_factor)
43
- return diffuser.p_sample_loop(diffusion_model, output_shape, model_kwargs={'spectrogram': mel, 'conditioning_input': conditioning_input})
44
-
45
-
46
- def load_conditioning(path, sample_rate=22050, cond_length=44100):
47
  rel_clip = load_audio(path, sample_rate)
48
  gap = rel_clip.shape[-1] - cond_length
49
  if gap < 0:
@@ -82,86 +64,122 @@ def fix_autoregressive_output(codes, stop_token):
82
  return codes
83
 
84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  if __name__ == '__main__':
 
 
86
  preselected_cond_voices = {
87
- 'simmons': ['Y:\\clips\\books1\\754_Dan Simmons - The Rise Of Endymion 356 of 450\\00026.wav'],
88
- 'news_girl': ['Y:\\clips\\podcasts-0\\8288_20210113-Is More Violence Coming_\\00022.wav', 'Y:\\clips\\podcasts-0\\8288_20210113-Is More Violence Coming_\\00016.wav'],
89
- 'dan_carlin': ['Y:\\clips\\books1\\5_dchha06 Shield of the West\\00476.wav', 'Y:\\clips\\books1\\15_dchha16 Nazi Tidbits\\00036.wav'],
90
- 'libri_test': ['Y:\\libritts\\test-clean\\672\\122797\\672_122797_000057_000002.wav'],
 
 
 
 
 
 
91
  }
92
 
93
  parser = argparse.ArgumentParser()
94
  parser.add_argument('-autoregressive_model_path', type=str, help='Autoregressive model checkpoint to load.', default='.models/unified_voice.pth')
95
  parser.add_argument('-clip_model_path', type=str, help='CLIP model checkpoint to load.', default='.models/clip.pth')
96
- parser.add_argument('-diffusion_model_path', type=str, help='Diffusion model checkpoint to load.', default='./models/diffusion_vocoder.pth')
97
- parser.add_argument('-dvae_model_path', type=str, help='DVAE model checkpoint to load.', default='./models/dvae.pth')
98
  parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
99
- parser.add_argument('-cond_preset', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dan_carlin')
100
- parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=32)
101
- parser.add_argument('-num_batches', type=int, help='How many batches those samples should be produced over.', default=2)
102
  parser.add_argument('-num_outputs', type=int, help='Number of outputs to produce.', default=2)
103
  parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
104
  args = parser.parse_args()
105
  os.makedirs(args.output_path, exist_ok=True)
106
 
107
- print("Loading GPT TTS..")
108
- autoregressive = UnifiedVoice(max_mel_tokens=300, max_text_tokens=200, max_conditioning_inputs=2, layers=30, model_dim=1024, heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False, train_solo_embeddings=False).eval()
109
- autoregressive.load_state_dict(torch.load(args.autoregressive_model_path))
110
- stop_mel_token = autoregressive.stop_mel_token
111
-
112
- print("Loading data..")
113
- tokenizer = VoiceBpeTokenizer()
114
- text = torch.IntTensor(tokenizer.encode(args.text)).unsqueeze(0).cuda()
115
- text = F.pad(text, (0,1)) # This may not be necessary.
116
- cond_paths = preselected_cond_voices[args.cond_preset]
117
- conds = []
118
- for cond_path in cond_paths:
119
- c, cond_wav = load_conditioning(cond_path, cond_length=132300)
120
- conds.append(c)
121
- conds = torch.stack(conds, dim=1) # And just use the last cond_wav for the diffusion model.
122
-
123
- with torch.no_grad():
124
- print("Performing GPT inference..")
125
- samples = []
126
- for b in tqdm(range(args.num_batches)):
127
- codes = autoregressive.inference_speech(conds, text, num_beams=1, repetition_penalty=1.0, do_sample=True, top_k=50, top_p=.95,
128
- temperature=.9, num_return_sequences=args.num_samples//args.num_batches, length_penalty=1)
129
- padding_needed = 250 - codes.shape[1]
130
- codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
131
- samples.append(codes)
132
- samples = torch.cat(samples, dim=0)
133
- del autoregressive
134
-
135
- print("Loading CLIP..")
136
- clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=8, text_seq_len=120, text_heads=8,
137
- num_speech_tokens=8192, speech_enc_depth=10, speech_heads=8, speech_seq_len=250).eval()
138
- clip.load_state_dict(torch.load(args.clip_model_path))
139
- print("Performing CLIP filtering..")
140
- for i in range(samples.shape[0]):
141
- samples[i] = fix_autoregressive_output(samples[i], stop_mel_token)
142
- clip_results = clip(text.repeat(samples.shape[0], 1),
143
- torch.full((samples.shape[0],), fill_value=text.shape[1]-1, dtype=torch.long, device='cuda'),
144
- samples, torch.full((samples.shape[0],), fill_value=samples.shape[1]*1024, dtype=torch.long, device='cuda'),
145
- return_loss=False)
146
- best_results = samples[torch.topk(clip_results, k=args.num_outputs).indices]
147
-
148
- # Delete the autoregressive and clip models to free up GPU memory
149
- del samples, clip
150
-
151
- print("Loading DVAE..")
152
- dvae = DiscreteVAE(positional_dims=1, channels=80, hidden_dim=512, num_resnet_blocks=3, codebook_dim=512, num_tokens=8192, num_layers=2,
153
- record_codes=True, kernel_size=3, use_transposed_convs=False).eval()
154
- dvae.load_state_dict(torch.load(args.dvae_model_path))
155
- print("Loading Diffusion Model..")
156
- diffusion = DiscreteDiffusionVocoder(model_channels=128, dvae_dim=80, channel_mult=[1, 1, 1.5, 2, 3, 4, 6, 8, 8, 8, 8], num_res_blocks=[1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1],
157
- spectrogram_conditioning_resolutions=[2,512], attention_resolutions=[512,1024], num_heads=4, kernel_size=3, scale_factor=2,
158
- conditioning_inputs_provided=True, time_embed_dim_multiplier=4).eval()
159
- diffusion.load_state_dict(torch.load(args.diffusion_model_path))
160
- diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=100)
161
-
162
- print("Performing vocoding..")
163
- # Perform vocoding on each batch element separately: Vocoding is very memory (and compute!) intensive.
164
- for b in range(best_results.shape[0]):
165
- code = best_results[b].unsqueeze(0)
166
- wav = do_spectrogram_diffusion(diffusion, dvae, diffuser, code, cond_wav, spectrogram_compression_factor=256)
167
- torchaudio.save(os.path.join(args.output_path, f'gpt_tts_output_{b}.wav'), wav.squeeze(0).cpu(), 22050)
 
 
 
 
 
 
 
25
  model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps))
26
 
27
 
28
+ def load_conditioning(path, sample_rate=22050, cond_length=132300):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  rel_clip = load_audio(path, sample_rate)
30
  gap = rel_clip.shape[-1] - cond_length
31
  if gap < 0:
 
64
  return codes
65
 
66
 
67
+ def do_spectrogram_diffusion(diffusion_model, dvae_model, diffuser, mel_codes, conditioning_input, spectrogram_compression_factor=128, mean=False):
68
+ """
69
+ Uses the specified diffusion model and DVAE model to convert the provided MEL & conditioning inputs into an audio clip.
70
+ """
71
+ with torch.no_grad():
72
+ mel = dvae_model.decode(mel_codes)[0]
73
+
74
+ # Pad MEL to multiples of 2048//spectrogram_compression_factor
75
+ msl = mel.shape[-1]
76
+ dsl = 2048 // spectrogram_compression_factor
77
+ gap = dsl - (msl % dsl)
78
+ if gap > 0:
79
+ mel = torch.nn.functional.pad(mel, (0, gap))
80
+
81
+ output_shape = (mel.shape[0], 1, mel.shape[-1] * spectrogram_compression_factor)
82
+ if mean:
83
+ return diffuser.p_sample_loop(diffusion_model, output_shape, noise=torch.zeros(output_shape, device=mel_codes.device),
84
+ model_kwargs={'spectrogram': mel, 'conditioning_input': conditioning_input})
85
+ else:
86
+ return diffuser.p_sample_loop(diffusion_model, output_shape, model_kwargs={'spectrogram': mel, 'conditioning_input': conditioning_input})
87
+
88
+
89
  if __name__ == '__main__':
90
+ # These are voices drawn randomly from the training set. You are free to substitute your own voices in, but testing
91
+ # has shown that the model does not generalize to new voices very well.
92
  preselected_cond_voices = {
93
+ # Male voices
94
+ 'dotrice': ['voices/dotrice/1.wav', 'voices/dotrice/2.wav'],
95
+ 'harris': ['voices/male_harris1.wav', 'voices/male_harris2.wav'],
96
+ 'lescault': ['voices/male_lescault1.wav', 'voices/male_lescault2.wav'],
97
+ 'otto': ['voices/male_otto1.wav', 'voices/male_otto2.wav'],
98
+ # Female voices
99
+ 'atkins': ['voices/female_atkins1.wav', 'voices/female_atkins2.wav'],
100
+ 'grace': ['voices/female_grace1.wav', 'voices/female_grace2.wav'],
101
+ 'kennard': ['voices/female_kennard1.wav', 'voices/female_kennard2.wav'],
102
+ 'mol': ['voices/female_mol1.wav', 'voices/female_mol2.wav'],
103
  }
104
 
105
  parser = argparse.ArgumentParser()
106
  parser.add_argument('-autoregressive_model_path', type=str, help='Autoregressive model checkpoint to load.', default='.models/unified_voice.pth')
107
  parser.add_argument('-clip_model_path', type=str, help='CLIP model checkpoint to load.', default='.models/clip.pth')
108
+ parser.add_argument('-diffusion_model_path', type=str, help='Diffusion model checkpoint to load.', default='.models/diffusion_vocoder.pth')
109
+ parser.add_argument('-dvae_model_path', type=str, help='DVAE model checkpoint to load.', default='.models/dvae.pth')
110
  parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.")
111
+ parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol')
112
+ parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=512)
113
+ parser.add_argument('-num_batches', type=int, help='How many batches those samples should be produced over.', default=16)
114
  parser.add_argument('-num_outputs', type=int, help='Number of outputs to produce.', default=2)
115
  parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/')
116
  args = parser.parse_args()
117
  os.makedirs(args.output_path, exist_ok=True)
118
 
119
+ for voice in args.voice.split(','):
120
+ print("Loading GPT TTS..")
121
+ autoregressive = UnifiedVoice(max_mel_tokens=300, max_text_tokens=200, max_conditioning_inputs=2, layers=30, model_dim=1024,
122
+ heads=16, number_text_tokens=256, start_text_token=255, checkpointing=False, train_solo_embeddings=False).cuda().eval()
123
+ autoregressive.load_state_dict(torch.load(args.autoregressive_model_path))
124
+ stop_mel_token = autoregressive.stop_mel_token
125
+
126
+ print("Loading data..")
127
+ tokenizer = VoiceBpeTokenizer()
128
+ text = torch.IntTensor(tokenizer.encode(args.text)).unsqueeze(0).cuda()
129
+ text = F.pad(text, (0,1)) # This may not be necessary.
130
+ cond_paths = preselected_cond_voices[voice]
131
+ conds = []
132
+ for cond_path in cond_paths:
133
+ c, cond_wav = load_conditioning(cond_path)
134
+ conds.append(c)
135
+ conds = torch.stack(conds, dim=1) # And just use the last cond_wav for the diffusion model.
136
+
137
+ with torch.no_grad():
138
+ print("Performing autoregressive inference..")
139
+ samples = []
140
+ for b in tqdm(range(args.num_batches)):
141
+ codes = autoregressive.inference_speech(conds, text, num_beams=1, repetition_penalty=1.0, do_sample=True, top_k=50, top_p=.95,
142
+ temperature=.9, num_return_sequences=args.num_samples//args.num_batches, length_penalty=1)
143
+ padding_needed = 250 - codes.shape[1]
144
+ codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
145
+ samples.append(codes)
146
+ del autoregressive
147
+
148
+ print("Loading CLIP..")
149
+ clip = VoiceCLIP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=8, text_seq_len=120, text_heads=8,
150
+ num_speech_tokens=8192, speech_enc_depth=10, speech_heads=8, speech_seq_len=250).cuda().eval()
151
+ clip.load_state_dict(torch.load(args.clip_model_path))
152
+ print("Performing CLIP filtering..")
153
+ clip_results = []
154
+ for batch in samples:
155
+ for i in range(batch.shape[0]):
156
+ batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
157
+ text = text[:, :120] # Ugly hack to fix the fact that I didn't train CLIP to handle long enough text.
158
+ clip_results.append(clip(text.repeat(batch.shape[0], 1),
159
+ torch.full((batch.shape[0],), fill_value=text.shape[1]-1, dtype=torch.long, device='cuda'),
160
+ batch, torch.full((batch.shape[0],), fill_value=batch.shape[1]*1024, dtype=torch.long, device='cuda'),
161
+ return_loss=False))
162
+ clip_results = torch.cat(clip_results, dim=0)
163
+ samples = torch.cat(samples, dim=0)
164
+ best_results = samples[torch.topk(clip_results, k=args.num_outputs).indices]
165
+
166
+ # Delete the autoregressive and clip models to free up GPU memory
167
+ del samples, clip
168
+
169
+ print("Loading DVAE..")
170
+ dvae = DiscreteVAE(positional_dims=1, channels=80, hidden_dim=512, num_resnet_blocks=3, codebook_dim=512, num_tokens=8192, num_layers=2,
171
+ record_codes=True, kernel_size=3, use_transposed_convs=False).cuda().eval()
172
+ dvae.load_state_dict(torch.load(args.dvae_model_path))
173
+ print("Loading Diffusion Model..")
174
+ diffusion = DiscreteDiffusionVocoder(model_channels=128, dvae_dim=80, channel_mult=[1, 1, 1.5, 2, 3, 4, 6, 8, 8, 8, 8], num_res_blocks=[1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1],
175
+ spectrogram_conditioning_resolutions=[2,512], attention_resolutions=[512,1024], num_heads=4, kernel_size=3, scale_factor=2,
176
+ conditioning_inputs_provided=True, time_embed_dim_multiplier=4).cuda().eval()
177
+ diffusion.load_state_dict(torch.load(args.diffusion_model_path))
178
+ diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=100)
179
+
180
+ print("Performing vocoding..")
181
+ # Perform vocoding on each batch element separately: The diffusion model is very memory (and compute!) intensive.
182
+ for b in range(best_results.shape[0]):
183
+ code = best_results[b].unsqueeze(0)
184
+ wav = do_spectrogram_diffusion(diffusion, dvae, diffuser, code, cond_wav, spectrogram_compression_factor=256, mean=True)
185
+ torchaudio.save(os.path.join(args.output_path, f'{voice}_{b}.wav'), wav.squeeze(0).cpu(), 22050)
utils/audio.py CHANGED
@@ -1,5 +1,7 @@
1
  import torch
2
  import torchaudio
 
 
3
 
4
 
5
  def load_wav_to_torch(full_path):
 
1
  import torch
2
  import torchaudio
3
+ import numpy as np
4
+ from scipy.io.wavfile import read
5
 
6
 
7
  def load_wav_to_torch(full_path):