|
import argparse |
|
import os |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torchaudio |
|
|
|
from api_new_autoregressive import TextToSpeech, load_conditioning |
|
from utils.audio import load_audio |
|
from utils.tokenizer import VoiceBpeTokenizer |
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
preselected_cond_voices = { |
|
|
|
'dotrice': ['voices/dotrice/1.wav', 'voices/dotrice/2.wav'], |
|
'harris': ['voices/harris/1.wav', 'voices/harris/2.wav'], |
|
'lescault': ['voices/lescault/1.wav', 'voices/lescault/2.wav'], |
|
'otto': ['voices/otto/1.wav', 'voices/otto/2.wav'], |
|
|
|
'atkins': ['voices/atkins/1.wav', 'voices/atkins/2.wav'], |
|
'grace': ['voices/grace/1.wav', 'voices/grace/2.wav'], |
|
'kennard': ['voices/kennard/1.wav', 'voices/kennard/2.wav'], |
|
'mol': ['voices/mol/1.wav', 'voices/mol/2.wav'], |
|
} |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-text', type=str, help='Text to speak.', default="I am a language model that has learned to speak.") |
|
parser.add_argument('-voice', type=str, help='Use a preset conditioning voice (defined above). Overrides cond_path.', default='dotrice,harris,lescault,otto,atkins,grace,kennard,mol') |
|
parser.add_argument('-num_samples', type=int, help='How many total outputs the autoregressive transformer should produce.', default=32) |
|
parser.add_argument('-batch_size', type=int, help='How many samples to process at once in the autoregressive model.', default=16) |
|
parser.add_argument('-num_diffusion_samples', type=int, help='Number of outputs that progress to the diffusion stage.', default=16) |
|
parser.add_argument('-output_path', type=str, help='Where to store outputs.', default='results/') |
|
args = parser.parse_args() |
|
os.makedirs(args.output_path, exist_ok=True) |
|
|
|
tts = TextToSpeech(autoregressive_batch_size=args.batch_size) |
|
|
|
for voice in args.voice.split(','): |
|
tokenizer = VoiceBpeTokenizer() |
|
text = torch.IntTensor(tokenizer.encode(args.text)).unsqueeze(0).cuda() |
|
text = F.pad(text, (0,1)) |
|
cond_paths = preselected_cond_voices[voice] |
|
conds = [] |
|
for cond_path in cond_paths: |
|
c = load_audio(cond_path, 22050) |
|
conds.append(c) |
|
gen = tts.tts(args.text, conds, num_autoregressive_samples=args.num_samples) |
|
torchaudio.save(os.path.join(args.output_path, f'{voice}.wav'), gen.squeeze(0).cpu(), 24000) |
|
|
|
|