File size: 26,220 Bytes
5a958b4
 
 
 
 
f625a9e
5a958b4
 
 
f625a9e
5a958b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ad0f0e
 
5a958b4
 
 
 
 
 
 
 
9ad0f0e
5a958b4
 
 
 
9ad0f0e
 
 
 
5a958b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ad0f0e
5a958b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ad0f0e
5a958b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ad0f0e
5a958b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ad0f0e
 
5a958b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ad0f0e
 
5a958b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ad0f0e
 
5a958b4
 
 
 
 
 
 
 
 
 
 
 
f625a9e
5a958b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ad0f0e
 
5a958b4
 
 
 
 
 
 
f625a9e
5a958b4
f625a9e
5a958b4
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import functools

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
from models.arch_util import AttentionBlock
from utils.typical_sampling import TypicalLogitsWarper


def null_position_embeddings(range, dim):
    return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)


class ResBlock(nn.Module):
    """
    Basic residual convolutional block that uses GroupNorm.
    """
    def __init__(self, chan):
        super().__init__()
        self.net = nn.Sequential(
            nn.Conv1d(chan, chan, kernel_size=3, padding=1),
            nn.GroupNorm(chan//8, chan),
            nn.ReLU(),
            nn.Conv1d(chan, chan, kernel_size=3, padding=1),
            nn.GroupNorm(chan//8, chan)
        )

    def forward(self, x):
        return F.relu(self.net(x) + x)


class GPT2InferenceModel(GPT2PreTrainedModel):
    def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear):
        super().__init__(config)
        self.transformer = gpt
        self.text_pos_embedding = text_pos_emb
        self.embeddings = embeddings
        self.lm_head = nn.Sequential(norm, linear)

        # Model parallel
        self.model_parallel = False
        self.device_map = None
        self.cached_mel_emb = None

    def parallelize(self, device_map=None):
        self.device_map = (
            get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
            if device_map is None
            else device_map
        )
        assert_device_map(self.device_map, len(self.transformer.h))
        self.transformer.parallelize(self.device_map)
        self.lm_head = self.lm_head.to(self.transformer.first_device)
        self.model_parallel = True

    def deparallelize(self):
        self.transformer.deparallelize()
        self.transformer = self.transformer.to("cpu")
        self.lm_head = self.lm_head.to("cpu")
        self.model_parallel = False
        torch.cuda.empty_cache()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def store_mel_emb(self, mel_emb):
        self.cached_mel_emb = mel_emb

    def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):

        token_type_ids = kwargs.get("token_type_ids", None)
        # only last token for inputs_ids if past is defined in kwargs
        if past:
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None
        return {
            "input_ids": input_ids,
            "past_key_values": past,
            "use_cache": kwargs.get("use_cache"),
            "position_ids": position_ids,
            "attention_mask": attention_mask,
            "token_type_ids": token_type_ids,
        }

    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        assert self.cached_mel_emb is not None
        assert inputs_embeds is None  # Not supported by this inference model.
        assert labels is None  # Training not supported by this inference model.
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Create embedding
        mel_len = self.cached_mel_emb.shape[1]
        if input_ids.shape[1] != 1:
            text_inputs = input_ids[:, mel_len:]
            text_emb = self.embeddings(text_inputs)
            text_emb = text_emb + self.text_pos_embedding(text_emb)
            if self.cached_mel_emb.shape[0] != text_emb.shape[0]:
                mel_emb = self.cached_mel_emb.repeat_interleave(text_emb.shape[0]//self.cached_mel_emb.shape[0], 0)
            else:
                mel_emb = self.cached_mel_emb
            emb = torch.cat([mel_emb, text_emb], dim=1)
        else:
            emb = self.embeddings(input_ids)
            emb = emb + self.text_pos_embedding.get_fixed_embedding(attention_mask.shape[1]-mel_len, attention_mask.device)

        transformer_outputs = self.transformer(
            inputs_embeds=emb,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.transformer.first_device)
            hidden_states = hidden_states.to(self.lm_head.weight.device)

        lm_logits = self.lm_head(hidden_states)

        if not return_dict:
            return (lm_logits,) + transformer_outputs[1:]

        return CausalLMOutputWithCrossAttentions(
            loss=None,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
            cross_attentions=transformer_outputs.cross_attentions,
        )

    @staticmethod
    def _reorder_cache(past, beam_idx):
        """
        This function is used to re-order the :obj:`past_key_values` cache if
        :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
        called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
        """
        return tuple(
            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
            for layer_past in past
        )


class ConditioningEncoder(nn.Module):
    def __init__(self,
                 spec_dim,
                 embedding_dim,
                 attn_blocks=6,
                 num_attn_heads=4,
                 do_checkpointing=False,
                 mean=False):
        super().__init__()
        attn = []
        self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1)
        for a in range(attn_blocks):
            attn.append(AttentionBlock(embedding_dim, num_attn_heads))
        self.attn = nn.Sequential(*attn)
        self.dim = embedding_dim
        self.do_checkpointing = do_checkpointing
        self.mean = mean

    def forward(self, x):
        h = self.init(x)
        h = self.attn(h)
        if self.mean:
            return h.mean(dim=2)
        else:
            return h[:, :, 0]


class LearnedPositionEmbeddings(nn.Module):
    def __init__(self, seq_len, model_dim, init=.02):
        super().__init__()
        self.emb = nn.Embedding(seq_len, model_dim)
        # Initializing this way is standard for GPT-2
        self.emb.weight.data.normal_(mean=0.0, std=init)

    def forward(self, x):
        sl = x.shape[1]
        return self.emb(torch.arange(0, sl, device=x.device))

    def get_fixed_embedding(self, ind, dev):
        return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)


def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing):
    """
    GPT-2 implemented by the HuggingFace library.
    """
    from transformers import GPT2Config, GPT2Model
    gpt_config = GPT2Config(vocab_size=256,  # Unused.
                             n_positions=max_mel_seq_len+max_text_seq_len,
                             n_ctx=max_mel_seq_len+max_text_seq_len,
                             n_embd=model_dim,
                             n_layer=layers,
                             n_head=heads,
                             gradient_checkpointing=checkpointing,
                             use_cache=not checkpointing)
    gpt = GPT2Model(gpt_config)
    # Override the built in positional embeddings
    del gpt.wpe
    gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
    # Built-in token embeddings are unused.
    del gpt.wte
    return gpt, LearnedPositionEmbeddings(max_mel_seq_len, model_dim), LearnedPositionEmbeddings(max_text_seq_len, model_dim),\
           None, None


class MelEncoder(nn.Module):
    def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2):
        super().__init__()
        self.channels = channels
        self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=3, padding=1),
                                     nn.Sequential(*[ResBlock(channels//4) for _ in range(resblocks_per_reduction)]),
                                     nn.Conv1d(channels//4, channels//2, kernel_size=3, stride=2, padding=1),
                                     nn.GroupNorm(channels//16, channels//2),
                                     nn.ReLU(),
                                     nn.Sequential(*[ResBlock(channels//2) for _ in range(resblocks_per_reduction)]),
                                     nn.Conv1d(channels//2, channels, kernel_size=3, stride=2, padding=1),
                                     nn.GroupNorm(channels//8, channels),
                                     nn.ReLU(),
                                     nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]),
                                     )
        self.reduction = 4


    def forward(self, x):
        for e in self.encoder:
            x = e(x)
        return x.permute(0,2,1)


class UnifiedVoice(nn.Module):
    def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1,
                 mel_length_compression=1024, number_text_tokens=256,
                 start_text_token=255, stop_text_token=0, number_mel_codes=8194, start_mel_token=8192,
                 stop_mel_token=8193, train_solo_embeddings=False, use_mel_codes_as_input=True,
                 checkpointing=True, average_conditioning_embeddings=False):
        """
        Args:
            layers: Number of layers in transformer stack.
            model_dim: Operating dimensions of the transformer
            heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64
            max_text_tokens: Maximum number of text tokens that will be encountered by model.
            max_mel_tokens: Maximum number of MEL tokens that will be encountered by model.
            max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s).
            mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length.
            number_text_tokens:
            start_text_token:
            stop_text_token:
            number_mel_codes:
            start_mel_token:
            stop_mel_token:
            train_solo_embeddings:
            use_mel_codes_as_input:
            checkpointing:
            average_conditioning_embeddings: Whether or not conditioning embeddings should be averaged, instead of fed piecewise into the model.
        """
        super().__init__()

        self.number_text_tokens = number_text_tokens
        self.start_text_token = start_text_token
        self.stop_text_token = stop_text_token
        self.number_mel_codes = number_mel_codes
        self.start_mel_token = start_mel_token
        self.stop_mel_token = stop_mel_token
        self.layers = layers
        self.heads = heads
        self.max_mel_tokens = max_mel_tokens
        self.max_text_tokens = max_text_tokens
        self.model_dim = model_dim
        self.max_conditioning_inputs = max_conditioning_inputs
        self.mel_length_compression = mel_length_compression
        self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads)
        self.average_conditioning_embeddings = average_conditioning_embeddings
        self.text_embedding = nn.Embedding(self.number_text_tokens, model_dim)
        if use_mel_codes_as_input:
            self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim)
        else:
            self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1)
        self.gpt, self.mel_pos_embedding, self.text_pos_embedding, self.mel_layer_pos_embedding, self.text_layer_pos_embedding = \
            build_hf_gpt_transformer(layers, model_dim, heads, self.max_mel_tokens+2+self.max_conditioning_inputs, self.max_text_tokens+2, checkpointing)
        if train_solo_embeddings:
            self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
            self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
        else:
            self.mel_solo_embedding = 0
            self.text_solo_embedding = 0

        self.final_norm = nn.LayerNorm(model_dim)
        self.text_head = nn.Linear(model_dim, self.number_text_tokens)
        self.mel_head = nn.Linear(model_dim, self.number_mel_codes)

        # Initialize the embeddings per the GPT-2 scheme
        embeddings = [self.text_embedding]
        if use_mel_codes_as_input:
            embeddings.append(self.mel_embedding)
        for module in embeddings:
            module.weight.data.normal_(mean=0.0, std=.02)

    def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
        inp = F.pad(input, (1,0), value=start_token)
        tar = F.pad(input, (0,1), value=stop_token)
        return inp, tar

    def set_mel_padding(self, mel_input_tokens, wav_lengths):
        """
        Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
        that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
        preformatting to create a working TTS model.
        """
        # Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
        mel_lengths = wav_lengths // self.mel_length_compression
        for b in range(len(mel_lengths)):
            actual_end = mel_lengths[b] + 1  # Due to the convolutional nature of how these tokens are generated, it would be best if the model predicts a token past the actual last token.
            if actual_end < mel_input_tokens.shape[-1]:
                mel_input_tokens[b, actual_end:] = self.stop_mel_token
        return mel_input_tokens

    def get_logits(self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False):
        if second_inputs is not None:
            emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1)
        else:
            emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1)

        gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
        if get_attns:
            return gpt_out.attentions

        enc = gpt_out.last_hidden_state[:, 1:]  # The first logit is tied to the speech_conditioning_input
        enc = self.final_norm(enc)
        first_logits = enc[:, :first_inputs.shape[1]]
        first_logits = first_head(first_logits)
        first_logits = first_logits.permute(0,2,1)
        if second_inputs is not None:
            second_logits = enc[:, -second_inputs.shape[1]:]
            second_logits = second_head(second_logits)
            second_logits = second_logits.permute(0,2,1)
            return first_logits, second_logits
        else:
            return first_logits

    def forward(self, speech_conditioning_input, text_inputs, text_lengths, mel_codes, wav_lengths, text_first=True, raw_mels=None, return_attentions=False):
        """
        Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
        (actuated by `text_first`).

        speech_conditioning_input: MEL float tensor, (b,80,s)
        text_inputs: long tensor, (b,t)
        text_lengths: long tensor, (b,)
        mel_inputs:  long tensor, (b,m)
        wav_lengths: long tensor, (b,)
        raw_mels: MEL float tensor (b,80,s)
        """
        assert self.max_mel_tokens >= mel_codes.shape[1], f'{mel_codes.shape[1]}'
        assert self.max_text_tokens >= text_inputs.shape[1], f'{text_inputs.shape[1]}'

        # This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
        # chopping the inputs by the maximum actual length.
        max_text_len = text_lengths.max()
        text_inputs = F.pad(text_inputs[:, :max_text_len], (0,1), value=self.stop_text_token)
        max_mel_len = wav_lengths.max() // self.mel_length_compression
        mel_codes = F.pad(mel_codes[:, :max_mel_len], (0,1), value=self.stop_mel_token)
        if raw_mels is not None:
            raw_mels = raw_mels[:, :, :max_mel_len*4]
        mel_codes = self.set_mel_padding(mel_codes, wav_lengths)

        speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input
        conds = []
        for j in range(speech_conditioning_input.shape[1]):
            conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
        conds = torch.stack(conds, dim=1)
        if self.average_conditioning_embeddings:
            conds = conds.mean(dim=1).unsqueeze(1)

        text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
        text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
        mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token)
        if raw_mels is not None:
            mel_inp = F.pad(raw_mels, (0, 8))
        else:
            mel_inp = mel_codes
        mel_emb = self.mel_embedding(mel_inp)
        mel_emb = mel_emb + self.mel_pos_embedding(mel_codes)
        if text_first:
            text_logits, mel_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions)
        else:
            mel_logits, text_logits = self.get_logits(conds, mel_emb, self.mel_head, text_emb, self.text_head, get_attns=return_attentions)

        if return_attentions:
            return mel_logits
        loss_text = F.cross_entropy(text_logits, text_targets.long())
        loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
        return loss_text.mean(), loss_mel.mean(), mel_logits

    def text_forward(self, speech_conditioning_input, text_inputs, text_lengths):
        """
        Performs autoregressive modeling on only text. Still requires a speech_conditioning_input due to the way the
        model inputs are formatted. Just provide any audio clip (arguably, zeros could be provided).
        """
        assert self.max_text_tokens >= text_inputs.shape[1], f'{text_inputs.shape[1]}'

        # This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
        # chopping the inputs by the maximum actual length.
        max_text_len = text_lengths.max()
        text_inputs = F.pad(text_inputs[:, :max_text_len], (0,1), value=self.stop_text_token)

        speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input
        conds = []
        for j in range(speech_conditioning_input.shape[1]):
            conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
        conds = torch.stack(conds, dim=1)
        if self.average_conditioning_embeddings:
            conds = conds.mean(dim=1).unsqueeze(1)

        text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
        text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) + self.text_solo_embedding
        text_logits = self.get_logits(conds, text_emb, self.text_head)
        loss_text = F.cross_entropy(text_logits, text_targets.long())
        return loss_text.mean()

    def speech_forward(self, speech_conditioning_input, mel_codes, wav_lengths, raw_mels=None):
        """
        Performs autoregressive modeling on only speech data.
        """
        assert self.max_mel_tokens >= mel_codes.shape[1], f'{mel_codes.shape[1]}'

        # This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
        # chopping the inputs by the maximum actual length.
        max_mel_len = wav_lengths.max() // self.mel_length_compression
        mel_codes = F.pad(mel_codes[:, :max_mel_len], (0,1), value=self.stop_mel_token)
        mel_codes = self.set_mel_padding(mel_codes, wav_lengths)
        if raw_mels is not None:
            raw_mels = raw_mels[:, :, :max_mel_len*4]

        speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input
        conds = []
        for j in range(speech_conditioning_input.shape[1]):
            conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
        conds = torch.stack(conds, dim=1)
        if self.average_conditioning_embeddings:
            conds = conds.mean(dim=1).unsqueeze(1)

        mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token)
        if raw_mels is not None:
            mel_inp = F.pad(raw_mels, (0, 4))
        else:
            mel_inp = mel_codes
        mel_emb = self.mel_embedding(mel_inp)
        mel_emb = mel_emb + self.mel_pos_embedding(mel_codes) + self.mel_solo_embedding
        mel_logits = self.get_logits(conds, mel_emb, self.mel_head)
        loss_mel = F.cross_entropy(mel_logits, mel_targets.long())
        return loss_mel.mean()

    def inference_speech(self, speech_conditioning_input, text_inputs, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs):
        seq_length = self.max_mel_tokens + self.max_text_tokens + 2
        if not hasattr(self, 'inference_model'):
            # TODO: Decouple gpt_config from this inference model.
            gpt_config = GPT2Config(vocab_size=self.max_mel_tokens,
                                    n_positions=seq_length,
                                    n_ctx=seq_length,
                                    n_embd=self.model_dim,
                                    n_layer=self.layers,
                                    n_head=self.heads,
                                    gradient_checkpointing=False,
                                    use_cache=True)
            self.inference_model = GPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head)
            self.gpt.wte = self.mel_embedding

        text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
        text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
        text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)

        speech_conditioning_input = speech_conditioning_input.unsqueeze(1) if len(speech_conditioning_input.shape) == 3 else speech_conditioning_input
        conds = []
        for j in range(speech_conditioning_input.shape[1]):
            conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
        conds = torch.stack(conds, dim=1)
        if self.average_conditioning_embeddings:
            conds = conds.mean(dim=1).unsqueeze(1)

        emb = torch.cat([conds, text_emb], dim=1)
        self.inference_model.store_mel_emb(emb)

        fake_inputs = torch.full((emb.shape[0], conds.shape[1]+emb.shape[1],), fill_value=1, dtype=torch.long, device=text_inputs.device)
        fake_inputs[:,-1] = self.start_mel_token

        logits_processor = LogitsProcessorList([TypicalLogitsWarper(mass=typical_mass)]) if typical_sampling else LogitsProcessorList()
        gen = self.inference_model.generate(fake_inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, eos_token_id=self.stop_mel_token,
                                            max_length=fake_inputs.shape[-1] + self.max_mel_tokens - 1, logits_processor=logits_processor, **hf_generate_kwargs)
        return gen[:, fake_inputs.shape[1]:]


if __name__ == '__main__':
    gpt = UnifiedVoice(model_dim=256, heads=4, train_solo_embeddings=True, use_mel_codes_as_input=True, max_conditioning_inputs=4)
    l = gpt(torch.randn(2, 3, 80, 800),
            torch.randint(high=120, size=(2,120)),
            torch.tensor([32, 120]),
            torch.randint(high=8192, size=(2,250)),
            torch.tensor([250*256,195*256]))
    gpt.text_forward(torch.randn(2,80,800), torch.randint(high=50, size=(2,80)), torch.tensor([32, 80]))