File size: 4,772 Bytes
5a958b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum
from models.transformer import Transformer
def exists(val):
return val is not None
def masked_mean(t, mask, dim = 1):
t = t.masked_fill(~mask[:, :, None], 0.)
return t.sum(dim = 1) / mask.sum(dim = 1)[..., None]
class VoiceCLIP(nn.Module):
"""
CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding
transcribed text.
Originally from https://github.com/lucidrains/DALLE-pytorch/blob/main/dalle_pytorch/dalle_pytorch.py
"""
def __init__(
self,
*,
dim_text=512,
dim_speech=512,
dim_latent=512,
num_text_tokens=256,
text_enc_depth=6,
text_seq_len=120,
text_heads=8,
num_speech_tokens=8192,
speech_enc_depth=6,
speech_heads=8,
speech_seq_len=250,
text_mask_percentage=0,
voice_mask_percentage=0,
wav_token_compression=1024,
):
super().__init__()
self.text_emb = nn.Embedding(num_text_tokens, dim_text)
self.text_pos_emb = nn.Embedding(text_seq_len, dim_text)
self.text_transformer = Transformer(causal=False, seq_len=text_seq_len, dim=dim_text, depth=text_enc_depth,
heads=text_heads)
self.to_text_latent = nn.Linear(dim_text, dim_latent, bias=False)
self.speech_emb = nn.Embedding(num_speech_tokens, dim_speech)
self.speech_pos_emb = nn.Embedding(num_speech_tokens, dim_speech)
self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech,
depth=speech_enc_depth, heads=speech_heads)
self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False)
self.temperature = nn.Parameter(torch.tensor(1.))
self.text_mask_percentage = text_mask_percentage
self.voice_mask_percentage = voice_mask_percentage
self.wav_token_compression = wav_token_compression
def forward(
self,
text,
text_lengths,
speech_tokens,
wav_lengths,
return_loss=False
):
# This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by
# chopping the inputs by the maximum actual length.
max_text_len = text_lengths.max()
text = text[:, :max_text_len]
max_mel_len = wav_lengths.max() // self.wav_token_compression
speech_tokens = speech_tokens[:, :max_mel_len]
b, device = text.shape[0], text.device
if self.training:
text_mask = torch.rand_like(text.float()) > self.text_mask_percentage
voice_mask = torch.rand_like(speech_tokens.float()) > self.voice_mask_percentage
else:
text_mask = torch.ones_like(text.float()).bool()
voice_mask = torch.ones_like(speech_tokens.float()).bool()
text_emb = self.text_emb(text)
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
speech_emb = self.speech_emb(speech_tokens)
speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device))
enc_text = self.text_transformer(text_emb, mask=text_mask)
enc_speech = self.speech_transformer(speech_emb, mask=voice_mask)
text_latents = masked_mean(enc_text, text_mask, dim=1)
speech_latents = masked_mean(enc_speech, voice_mask, dim=1)
text_latents = self.to_text_latent(text_latents)
speech_latents = self.to_speech_latent(speech_latents)
text_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (text_latents, speech_latents))
temp = self.temperature.exp()
if not return_loss:
sim = einsum('n d, n d -> n', text_latents, speech_latents) * temp
return sim
sim = einsum('i d, j d -> i j', text_latents, speech_latents) * temp
labels = torch.arange(b, device=device)
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
return loss
if __name__ == '__main__':
clip = VoiceCLIP(text_mask_percentage=.2, voice_mask_percentage=.2)
clip(torch.randint(0,256,(2,120)),
torch.tensor([50,100]),
torch.randint(0,8192,(2,250)),
torch.tensor([101,102]),
return_loss=True)
nonloss = clip(torch.randint(0,256,(2,120)),
torch.tensor([50,100]),
torch.randint(0,8192,(2,250)),
torch.tensor([101,102]),
return_loss=False)
print(nonloss.shape) |