File size: 1,579 Bytes
b78ae92
 
 
 
 
 
 
 
 
17af2df
b78ae92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17af2df
9db06e1
b1ba841
 
b78ae92
17af2df
b78ae92
b1ba841
b78ae92
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os

import torchaudio

from api import TextToSpeech
from utils.audio import load_audio

if __name__ == '__main__':
    fname = 'Y:\\libritts\\test-clean\\transcribed-brief-w2v.tsv'
    outpath = 'D:\\tmp\\tortoise-tts-eval\\eval_new_autoregressive'
    outpath_real = 'D:\\tmp\\tortoise-tts-eval\\real'

    os.makedirs(outpath, exist_ok=True)
    os.makedirs(outpath_real, exist_ok=True)
    with open(fname, 'r', encoding='utf-8') as f:
        lines = [l.strip().split('\t') for l in f.readlines()]

    recorder = open(os.path.join(outpath, 'transcript.tsv'), 'w', encoding='utf-8')
    tts = TextToSpeech()
    for e, line in enumerate(lines):
        transcript = line[0]
        if len(transcript) > 120:
            continue  # We need to support this, but cannot yet.
        path = os.path.join(os.path.dirname(fname), line[1])
        cond_audio = load_audio(path, 22050)
        torchaudio.save(os.path.join(outpath_real, os.path.basename(line[1])), cond_audio, 22050)
        sample = tts.tts(transcript, [cond_audio, cond_audio], num_autoregressive_samples=512, k=1,
                             repetition_penalty=2.0, length_penalty=2, temperature=.5, top_p=.5,
                             diffusion_temperature=.7, cond_free_k=2, diffusion_iterations=200)

        down = torchaudio.functional.resample(sample, 24000, 22050)
        fout_path = os.path.join(outpath, os.path.basename(line[1]))
        torchaudio.save(fout_path, down.squeeze(0), 22050)

        recorder.write(f'{transcript}\t{fout_path}\n')
        recorder.flush()
    recorder.close()