jangedoo commited on
Commit
20201d2
1 Parent(s): 645a509

Add new SentenceTransformer model.

Browse files
Files changed (1) hide show
  1. README.md +31 -22
README.md CHANGED
@@ -21,6 +21,7 @@ tags:
21
  - loss:MSELoss
22
  - dataset_size:5000
23
  - dataset_size:8000
 
24
  widget:
25
  - source_sentence: 'The aggressive semi-employed religion workshop of Razzak, (EFP).
26
 
@@ -112,7 +113,7 @@ model-index:
112
  type: unknown
113
  metrics:
114
  - type: negative_mse
115
- value: -0.37439612206071615
116
  name: Negative Mse
117
  - task:
118
  type: translation
@@ -122,13 +123,13 @@ model-index:
122
  type: unknown
123
  metrics:
124
  - type: src2trg_accuracy
125
- value: 0.0186
126
  name: Src2Trg Accuracy
127
  - type: trg2src_accuracy
128
- value: 0.00835
129
  name: Trg2Src Accuracy
130
  - type: mean_accuracy
131
- value: 0.013474999999999999
132
  name: Mean Accuracy
133
  ---
134
 
@@ -231,7 +232,7 @@ You can finetune this model on your own dataset.
231
 
232
  | Metric | Value |
233
  |:-----------------|:------------|
234
- | **negative_mse** | **-0.3744** |
235
 
236
  #### Translation
237
 
@@ -239,9 +240,9 @@ You can finetune this model on your own dataset.
239
 
240
  | Metric | Value |
241
  |:------------------|:-----------|
242
- | src2trg_accuracy | 0.0186 |
243
- | trg2src_accuracy | 0.0083 |
244
- | **mean_accuracy** | **0.0135** |
245
 
246
  <!--
247
  ## Bias, Risks and Limitations
@@ -262,7 +263,7 @@ You can finetune this model on your own dataset.
262
  #### momo22/eng2nep
263
 
264
  * Dataset: [momo22/eng2nep](https://huggingface.co/datasets/momo22/eng2nep) at [57da8d4](https://huggingface.co/datasets/momo22/eng2nep/tree/57da8d44266896e334c1d8f2528cbbf666fbd0ca)
265
- * Size: 8,000 training samples
266
  * Columns: <code>English</code>, <code>Nepali</code>, and <code>label</code>
267
  * Approximate statistics based on the first 1000 samples:
268
  | | English | Nepali | label |
@@ -282,13 +283,13 @@ You can finetune this model on your own dataset.
282
  #### momo22/eng2nep
283
 
284
  * Dataset: [momo22/eng2nep](https://huggingface.co/datasets/momo22/eng2nep) at [57da8d4](https://huggingface.co/datasets/momo22/eng2nep/tree/57da8d44266896e334c1d8f2528cbbf666fbd0ca)
285
- * Size: 500 evaluation samples
286
  * Columns: <code>English</code>, <code>Nepali</code>, and <code>label</code>
287
  * Approximate statistics based on the first 1000 samples:
288
- | | English | Nepali | label |
289
- |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------|
290
- | type | string | string | list |
291
- | details | <ul><li>min: 4 tokens</li><li>mean: 26.71 tokens</li><li>max: 213 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 64.1 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>size: 384 elements</li></ul> |
292
  * Samples:
293
  | English | Nepali | label |
294
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
@@ -304,7 +305,6 @@ You can finetune this model on your own dataset.
304
  - `per_device_train_batch_size`: 64
305
  - `per_device_eval_batch_size`: 64
306
  - `learning_rate`: 2e-05
307
- - `num_train_epochs`: 1
308
  - `warmup_ratio`: 0.1
309
  - `bf16`: True
310
  - `push_to_hub`: True
@@ -330,7 +330,7 @@ You can finetune this model on your own dataset.
330
  - `adam_beta2`: 0.999
331
  - `adam_epsilon`: 1e-08
332
  - `max_grad_norm`: 1.0
333
- - `num_train_epochs`: 1
334
  - `max_steps`: -1
335
  - `lr_scheduler_type`: linear
336
  - `lr_scheduler_kwargs`: {}
@@ -427,12 +427,21 @@ You can finetune this model on your own dataset.
427
  </details>
428
 
429
  ### Training Logs
430
- | Epoch | Step | Training Loss | loss | mean_accuracy | negative_mse |
431
- |:-----:|:----:|:-------------:|:------:|:-------------:|:------------:|
432
- | 0.4 | 50 | 0.0021 | 0.0019 | 0.0111 | -0.3837 |
433
- | 0.8 | 100 | 0.002 | 0.0019 | 0.0123 | -0.3794 |
434
- | 0.4 | 50 | 0.002 | 0.0019 | 0.0130 | -0.3773 |
435
- | 0.8 | 100 | 0.002 | 0.0019 | 0.0135 | -0.3744 |
 
 
 
 
 
 
 
 
 
436
 
437
 
438
  ### Framework Versions
 
21
  - loss:MSELoss
22
  - dataset_size:5000
23
  - dataset_size:8000
24
+ - dataset_size:100000
25
  widget:
26
  - source_sentence: 'The aggressive semi-employed religion workshop of Razzak, (EFP).
27
 
 
113
  type: unknown
114
  metrics:
115
  - type: negative_mse
116
+ value: -0.32407890539616346
117
  name: Negative Mse
118
  - task:
119
  type: translation
 
123
  type: unknown
124
  metrics:
125
  - type: src2trg_accuracy
126
+ value: 0.05445
127
  name: Src2Trg Accuracy
128
  - type: trg2src_accuracy
129
+ value: 0.02105
130
  name: Trg2Src Accuracy
131
  - type: mean_accuracy
132
+ value: 0.03775
133
  name: Mean Accuracy
134
  ---
135
 
 
232
 
233
  | Metric | Value |
234
  |:-----------------|:------------|
235
+ | **negative_mse** | **-0.3241** |
236
 
237
  #### Translation
238
 
 
240
 
241
  | Metric | Value |
242
  |:------------------|:-----------|
243
+ | src2trg_accuracy | 0.0544 |
244
+ | trg2src_accuracy | 0.021 |
245
+ | **mean_accuracy** | **0.0377** |
246
 
247
  <!--
248
  ## Bias, Risks and Limitations
 
263
  #### momo22/eng2nep
264
 
265
  * Dataset: [momo22/eng2nep](https://huggingface.co/datasets/momo22/eng2nep) at [57da8d4](https://huggingface.co/datasets/momo22/eng2nep/tree/57da8d44266896e334c1d8f2528cbbf666fbd0ca)
266
+ * Size: 100,000 training samples
267
  * Columns: <code>English</code>, <code>Nepali</code>, and <code>label</code>
268
  * Approximate statistics based on the first 1000 samples:
269
  | | English | Nepali | label |
 
283
  #### momo22/eng2nep
284
 
285
  * Dataset: [momo22/eng2nep](https://huggingface.co/datasets/momo22/eng2nep) at [57da8d4](https://huggingface.co/datasets/momo22/eng2nep/tree/57da8d44266896e334c1d8f2528cbbf666fbd0ca)
286
+ * Size: 8,000 evaluation samples
287
  * Columns: <code>English</code>, <code>Nepali</code>, and <code>label</code>
288
  * Approximate statistics based on the first 1000 samples:
289
+ | | English | Nepali | label |
290
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
291
+ | type | string | string | list |
292
+ | details | <ul><li>min: 4 tokens</li><li>mean: 26.48 tokens</li><li>max: 213 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 63.73 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>size: 384 elements</li></ul> |
293
  * Samples:
294
  | English | Nepali | label |
295
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
 
305
  - `per_device_train_batch_size`: 64
306
  - `per_device_eval_batch_size`: 64
307
  - `learning_rate`: 2e-05
 
308
  - `warmup_ratio`: 0.1
309
  - `bf16`: True
310
  - `push_to_hub`: True
 
330
  - `adam_beta2`: 0.999
331
  - `adam_epsilon`: 1e-08
332
  - `max_grad_norm`: 1.0
333
+ - `num_train_epochs`: 3
334
  - `max_steps`: -1
335
  - `lr_scheduler_type`: linear
336
  - `lr_scheduler_kwargs`: {}
 
427
  </details>
428
 
429
  ### Training Logs
430
+ | Epoch | Step | Training Loss | loss | mean_accuracy | negative_mse |
431
+ |:------:|:----:|:-------------:|:------:|:-------------:|:------------:|
432
+ | 0.4 | 50 | 0.0021 | 0.0019 | 0.0111 | -0.3837 |
433
+ | 0.8 | 100 | 0.002 | 0.0019 | 0.0123 | -0.3794 |
434
+ | 0.4 | 50 | 0.002 | 0.0019 | 0.0130 | -0.3773 |
435
+ | 0.8 | 100 | 0.002 | 0.0019 | 0.0135 | -0.3744 |
436
+ | 0.3199 | 500 | 0.002 | 0.0018 | 0.0166 | -0.3597 |
437
+ | 0.6398 | 1000 | 0.0019 | 0.0018 | 0.0204 | -0.3461 |
438
+ | 0.9597 | 1500 | 0.0018 | 0.0017 | 0.0241 | -0.3389 |
439
+ | 1.2796 | 2000 | 0.0018 | 0.0017 | 0.0273 | -0.3351 |
440
+ | 1.5995 | 2500 | 0.0018 | 0.0017 | 0.0312 | -0.3302 |
441
+ | 1.9194 | 3000 | 0.0018 | 0.0017 | 0.0328 | -0.3284 |
442
+ | 2.2393 | 3500 | 0.0018 | 0.0017 | 0.0353 | -0.3264 |
443
+ | 2.5592 | 4000 | 0.0018 | 0.0016 | 0.0374 | -0.3246 |
444
+ | 2.8791 | 4500 | 0.0018 | 0.0016 | 0.0377 | -0.3241 |
445
 
446
 
447
  ### Framework Versions