File size: 3,068 Bytes
bb21e95 6591979 bb21e95 6591979 bb21e95 df2940a bb21e95 6591979 bb21e95 6591979 bb21e95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: apache-2.0
base_model: microsoft/swinv2-small-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-small-patch4-window8-256-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6875
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swinv2-small-patch4-window8-256-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swinv2-small-patch4-window8-256](https://huggingface.co/microsoft/swinv2-small-patch4-window8-256) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2717
- Accuracy: 0.6875
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 4 | 0.6579 | 0.6339 |
| No log | 2.0 | 8 | 0.7129 | 0.5 |
| 0.6364 | 3.0 | 12 | 0.6774 | 0.5982 |
| 0.6364 | 4.0 | 16 | 0.6584 | 0.6786 |
| 0.3486 | 5.0 | 20 | 0.6864 | 0.6786 |
| 0.3486 | 6.0 | 24 | 0.8473 | 0.6429 |
| 0.3486 | 7.0 | 28 | 0.9735 | 0.6339 |
| 0.1224 | 8.0 | 32 | 0.8121 | 0.6964 |
| 0.1224 | 9.0 | 36 | 1.2379 | 0.6429 |
| 0.0424 | 10.0 | 40 | 1.1585 | 0.6875 |
| 0.0424 | 11.0 | 44 | 1.5274 | 0.6161 |
| 0.0424 | 12.0 | 48 | 1.1415 | 0.6607 |
| 0.0353 | 13.0 | 52 | 1.4422 | 0.6518 |
| 0.0353 | 14.0 | 56 | 1.6677 | 0.625 |
| 0.0141 | 15.0 | 60 | 1.1960 | 0.6696 |
| 0.0141 | 16.0 | 64 | 1.5515 | 0.625 |
| 0.0141 | 17.0 | 68 | 1.7990 | 0.6161 |
| 0.0135 | 18.0 | 72 | 1.4437 | 0.6607 |
| 0.0135 | 19.0 | 76 | 1.2816 | 0.7054 |
| 0.0073 | 20.0 | 80 | 1.2717 | 0.6875 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|