interestAI commited on
Commit
88212bb
1 Parent(s): b1634f3

Model save

Browse files
Files changed (2) hide show
  1. README.md +117 -89
  2. model.safetensors +1 -1
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  license: apache-2.0
3
  base_model: google/vit-base-patch16-224-in21k
4
  tags:
@@ -22,7 +23,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.9393939393939394
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.1902
36
- - Accuracy: 0.9394
37
 
38
  ## Model description
39
 
@@ -65,95 +66,122 @@ The following hyperparameters were used during training:
65
 
66
  ### Training results
67
 
68
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
- |:-------------:|:-------:|:----:|:---------------:|:--------:|
70
- | No log | 0.7273 | 2 | 1.1089 | 0.2909 |
71
- | No log | 1.8182 | 5 | 1.0961 | 0.3758 |
72
- | No log | 2.9091 | 8 | 1.0822 | 0.3758 |
73
- | 1.0988 | 4.0 | 11 | 1.0480 | 0.5939 |
74
- | 1.0988 | 4.7273 | 13 | 1.0333 | 0.6061 |
75
- | 1.0988 | 5.8182 | 16 | 0.9881 | 0.6667 |
76
- | 1.0988 | 6.9091 | 19 | 0.9274 | 0.6970 |
77
- | 1.0061 | 8.0 | 22 | 0.8714 | 0.8364 |
78
- | 1.0061 | 8.7273 | 24 | 0.8210 | 0.7879 |
79
- | 1.0061 | 9.8182 | 27 | 0.7619 | 0.8121 |
80
- | 0.8136 | 10.9091 | 30 | 0.6483 | 0.8667 |
81
- | 0.8136 | 12.0 | 33 | 0.6937 | 0.7939 |
82
- | 0.8136 | 12.7273 | 35 | 0.5885 | 0.8545 |
83
- | 0.8136 | 13.8182 | 38 | 0.6046 | 0.8182 |
84
- | 0.642 | 14.9091 | 41 | 0.5518 | 0.8364 |
85
- | 0.642 | 16.0 | 44 | 0.5370 | 0.8242 |
86
- | 0.642 | 16.7273 | 46 | 0.4765 | 0.8788 |
87
- | 0.642 | 17.8182 | 49 | 0.4416 | 0.8606 |
88
- | 0.5145 | 18.9091 | 52 | 0.4140 | 0.8970 |
89
- | 0.5145 | 20.0 | 55 | 0.4007 | 0.8970 |
90
- | 0.5145 | 20.7273 | 57 | 0.3803 | 0.8970 |
91
- | 0.4226 | 21.8182 | 60 | 0.3167 | 0.9394 |
92
- | 0.4226 | 22.9091 | 63 | 0.3398 | 0.9030 |
93
- | 0.4226 | 24.0 | 66 | 0.3147 | 0.9273 |
94
- | 0.4226 | 24.7273 | 68 | 0.3273 | 0.8970 |
95
- | 0.3282 | 25.8182 | 71 | 0.3125 | 0.9030 |
96
- | 0.3282 | 26.9091 | 74 | 0.2712 | 0.9212 |
97
- | 0.3282 | 28.0 | 77 | 0.2871 | 0.9273 |
98
- | 0.3282 | 28.7273 | 79 | 0.2534 | 0.9273 |
99
- | 0.3076 | 29.8182 | 82 | 0.2620 | 0.9273 |
100
- | 0.3076 | 30.9091 | 85 | 0.3845 | 0.8848 |
101
- | 0.3076 | 32.0 | 88 | 0.2495 | 0.9273 |
102
- | 0.3081 | 32.7273 | 90 | 0.3018 | 0.9091 |
103
- | 0.3081 | 33.8182 | 93 | 0.2204 | 0.9455 |
104
- | 0.3081 | 34.9091 | 96 | 0.2769 | 0.9152 |
105
- | 0.3081 | 36.0 | 99 | 0.2261 | 0.9394 |
106
- | 0.2451 | 36.7273 | 101 | 0.2092 | 0.9515 |
107
- | 0.2451 | 37.8182 | 104 | 0.3196 | 0.8727 |
108
- | 0.2451 | 38.9091 | 107 | 0.2629 | 0.9091 |
109
- | 0.2741 | 40.0 | 110 | 0.2360 | 0.9333 |
110
- | 0.2741 | 40.7273 | 112 | 0.1927 | 0.9515 |
111
- | 0.2741 | 41.8182 | 115 | 0.2834 | 0.9030 |
112
- | 0.2741 | 42.9091 | 118 | 0.2173 | 0.9394 |
113
- | 0.244 | 44.0 | 121 | 0.1997 | 0.9394 |
114
- | 0.244 | 44.7273 | 123 | 0.2163 | 0.9273 |
115
- | 0.244 | 45.8182 | 126 | 0.2865 | 0.8970 |
116
- | 0.244 | 46.9091 | 129 | 0.2483 | 0.9152 |
117
- | 0.224 | 48.0 | 132 | 0.1707 | 0.9576 |
118
- | 0.224 | 48.7273 | 134 | 0.1988 | 0.9455 |
119
- | 0.224 | 49.8182 | 137 | 0.2168 | 0.9455 |
120
- | 0.213 | 50.9091 | 140 | 0.1807 | 0.9576 |
121
- | 0.213 | 52.0 | 143 | 0.2478 | 0.9152 |
122
- | 0.213 | 52.7273 | 145 | 0.1975 | 0.9455 |
123
- | 0.213 | 53.8182 | 148 | 0.2218 | 0.9212 |
124
- | 0.2298 | 54.9091 | 151 | 0.2046 | 0.9455 |
125
- | 0.2298 | 56.0 | 154 | 0.2557 | 0.9152 |
126
- | 0.2298 | 56.7273 | 156 | 0.1962 | 0.9394 |
127
- | 0.2298 | 57.8182 | 159 | 0.1879 | 0.9394 |
128
- | 0.2189 | 58.9091 | 162 | 0.1983 | 0.9576 |
129
- | 0.2189 | 60.0 | 165 | 0.1285 | 0.9697 |
130
- | 0.2189 | 60.7273 | 167 | 0.2227 | 0.9212 |
131
- | 0.211 | 61.8182 | 170 | 0.1671 | 0.9515 |
132
- | 0.211 | 62.9091 | 173 | 0.1489 | 0.9636 |
133
- | 0.211 | 64.0 | 176 | 0.1842 | 0.9394 |
134
- | 0.211 | 64.7273 | 178 | 0.1687 | 0.9636 |
135
- | 0.1834 | 65.8182 | 181 | 0.2118 | 0.9091 |
136
- | 0.1834 | 66.9091 | 184 | 0.2191 | 0.9273 |
137
- | 0.1834 | 68.0 | 187 | 0.2014 | 0.9273 |
138
- | 0.1834 | 68.7273 | 189 | 0.1861 | 0.9515 |
139
- | 0.1846 | 69.8182 | 192 | 0.1309 | 0.9758 |
140
- | 0.1846 | 70.9091 | 195 | 0.1236 | 0.9636 |
141
- | 0.1846 | 72.0 | 198 | 0.1541 | 0.9455 |
142
- | 0.1581 | 72.7273 | 200 | 0.1577 | 0.9576 |
143
- | 0.1581 | 73.8182 | 203 | 0.1927 | 0.9273 |
144
- | 0.1581 | 74.9091 | 206 | 0.2247 | 0.9273 |
145
- | 0.1581 | 76.0 | 209 | 0.1811 | 0.9576 |
146
- | 0.1742 | 76.7273 | 211 | 0.2190 | 0.9273 |
147
- | 0.1742 | 77.8182 | 214 | 0.1487 | 0.9697 |
148
- | 0.1742 | 78.9091 | 217 | 0.1836 | 0.9576 |
149
- | 0.1837 | 80.0 | 220 | 0.1228 | 0.9758 |
150
- | 0.1837 | 80.7273 | 222 | 0.1400 | 0.9636 |
151
- | 0.1837 | 81.4545 | 224 | 0.1902 | 0.9394 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
 
153
 
154
  ### Framework versions
155
 
156
- - Transformers 4.42.3
157
- - Pytorch 2.3.1+cu121
158
  - Datasets 2.21.0
159
  - Tokenizers 0.19.1
 
1
  ---
2
+ library_name: transformers
3
  license: apache-2.0
4
  base_model: google/vit-base-patch16-224-in21k
5
  tags:
 
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
+ value: 0.875968992248062
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.3784
37
+ - Accuracy: 0.8760
38
 
39
  ## Model description
40
 
 
66
 
67
  ### Training results
68
 
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:--------:|:----:|:---------------:|:--------:|
71
+ | No log | 0.9697 | 8 | 2.2973 | 0.1434 |
72
+ | 2.2994 | 1.9394 | 16 | 2.2717 | 0.1957 |
73
+ | 2.2791 | 2.9091 | 24 | 2.2377 | 0.2287 |
74
+ | 2.2378 | 4.0 | 33 | 2.1866 | 0.3178 |
75
+ | 2.1604 | 4.9697 | 41 | 2.1096 | 0.3934 |
76
+ | 2.1604 | 5.9394 | 49 | 2.0257 | 0.4322 |
77
+ | 2.0801 | 6.9091 | 57 | 1.9312 | 0.4264 |
78
+ | 1.9587 | 8.0 | 66 | 1.7939 | 0.4942 |
79
+ | 1.821 | 8.9697 | 74 | 1.6869 | 0.5465 |
80
+ | 1.6903 | 9.9394 | 82 | 1.6025 | 0.5736 |
81
+ | 1.5687 | 10.9091 | 90 | 1.4849 | 0.6202 |
82
+ | 1.5687 | 12.0 | 99 | 1.4674 | 0.5407 |
83
+ | 1.4183 | 12.9697 | 107 | 1.3539 | 0.6163 |
84
+ | 1.3907 | 13.9394 | 115 | 1.2365 | 0.6938 |
85
+ | 1.3058 | 14.9091 | 123 | 1.2258 | 0.6938 |
86
+ | 1.2181 | 16.0 | 132 | 1.1759 | 0.6822 |
87
+ | 1.1537 | 16.9697 | 140 | 1.1413 | 0.7074 |
88
+ | 1.1537 | 17.9394 | 148 | 1.0586 | 0.7248 |
89
+ | 1.0819 | 18.9091 | 156 | 1.0059 | 0.7558 |
90
+ | 0.9905 | 20.0 | 165 | 0.9575 | 0.7578 |
91
+ | 1.0055 | 20.9697 | 173 | 0.9807 | 0.7442 |
92
+ | 0.9484 | 21.9394 | 181 | 0.9553 | 0.7539 |
93
+ | 0.9484 | 22.9091 | 189 | 0.8213 | 0.8004 |
94
+ | 0.8974 | 24.0 | 198 | 0.8305 | 0.8043 |
95
+ | 0.8545 | 24.9697 | 206 | 0.8273 | 0.7849 |
96
+ | 0.8724 | 25.9394 | 214 | 0.8177 | 0.7519 |
97
+ | 0.8642 | 26.9091 | 222 | 0.7692 | 0.7926 |
98
+ | 0.7609 | 28.0 | 231 | 0.7293 | 0.8062 |
99
+ | 0.7609 | 28.9697 | 239 | 0.7001 | 0.8198 |
100
+ | 0.7418 | 29.9394 | 247 | 0.7899 | 0.7636 |
101
+ | 0.7552 | 30.9091 | 255 | 0.6595 | 0.8101 |
102
+ | 0.7291 | 32.0 | 264 | 0.6971 | 0.7907 |
103
+ | 0.693 | 32.9697 | 272 | 0.7215 | 0.7946 |
104
+ | 0.6891 | 33.9394 | 280 | 0.6980 | 0.8004 |
105
+ | 0.6891 | 34.9091 | 288 | 0.6200 | 0.8372 |
106
+ | 0.6936 | 36.0 | 297 | 0.7245 | 0.7733 |
107
+ | 0.6698 | 36.9697 | 305 | 0.6724 | 0.7984 |
108
+ | 0.6502 | 37.9394 | 313 | 0.6701 | 0.8023 |
109
+ | 0.6988 | 38.9091 | 321 | 0.6049 | 0.8236 |
110
+ | 0.6709 | 40.0 | 330 | 0.6397 | 0.7965 |
111
+ | 0.6709 | 40.9697 | 338 | 0.5654 | 0.8391 |
112
+ | 0.652 | 41.9394 | 346 | 0.6371 | 0.8101 |
113
+ | 0.64 | 42.9091 | 354 | 0.6341 | 0.8062 |
114
+ | 0.6368 | 44.0 | 363 | 0.5662 | 0.8527 |
115
+ | 0.595 | 44.9697 | 371 | 0.5744 | 0.8411 |
116
+ | 0.595 | 45.9394 | 379 | 0.5465 | 0.8430 |
117
+ | 0.5823 | 46.9091 | 387 | 0.6254 | 0.7984 |
118
+ | 0.5514 | 48.0 | 396 | 0.5368 | 0.8333 |
119
+ | 0.5693 | 48.9697 | 404 | 0.5705 | 0.8043 |
120
+ | 0.5244 | 49.9394 | 412 | 0.5685 | 0.8314 |
121
+ | 0.5495 | 50.9091 | 420 | 0.5811 | 0.8120 |
122
+ | 0.5495 | 52.0 | 429 | 0.5037 | 0.8469 |
123
+ | 0.5501 | 52.9697 | 437 | 0.5423 | 0.8372 |
124
+ | 0.5405 | 53.9394 | 445 | 0.5487 | 0.8178 |
125
+ | 0.534 | 54.9091 | 453 | 0.5607 | 0.8217 |
126
+ | 0.5502 | 56.0 | 462 | 0.5141 | 0.8198 |
127
+ | 0.4772 | 56.9697 | 470 | 0.4813 | 0.8605 |
128
+ | 0.4772 | 57.9394 | 478 | 0.5007 | 0.8566 |
129
+ | 0.4823 | 58.9091 | 486 | 0.4847 | 0.8624 |
130
+ | 0.5107 | 60.0 | 495 | 0.5273 | 0.8333 |
131
+ | 0.5205 | 60.9697 | 503 | 0.4981 | 0.8430 |
132
+ | 0.5171 | 61.9394 | 511 | 0.4819 | 0.8430 |
133
+ | 0.5171 | 62.9091 | 519 | 0.4415 | 0.8682 |
134
+ | 0.5498 | 64.0 | 528 | 0.4578 | 0.8566 |
135
+ | 0.4732 | 64.9697 | 536 | 0.4614 | 0.8450 |
136
+ | 0.4623 | 65.9394 | 544 | 0.4923 | 0.8488 |
137
+ | 0.4406 | 66.9091 | 552 | 0.4556 | 0.8547 |
138
+ | 0.4889 | 68.0 | 561 | 0.4727 | 0.8488 |
139
+ | 0.4889 | 68.9697 | 569 | 0.4746 | 0.8469 |
140
+ | 0.4532 | 69.9394 | 577 | 0.4496 | 0.8585 |
141
+ | 0.3988 | 70.9091 | 585 | 0.4260 | 0.8702 |
142
+ | 0.4608 | 72.0 | 594 | 0.4464 | 0.8547 |
143
+ | 0.4429 | 72.9697 | 602 | 0.3946 | 0.8818 |
144
+ | 0.4502 | 73.9394 | 610 | 0.4566 | 0.8527 |
145
+ | 0.4502 | 74.9091 | 618 | 0.4472 | 0.8663 |
146
+ | 0.4381 | 76.0 | 627 | 0.4701 | 0.8372 |
147
+ | 0.4437 | 76.9697 | 635 | 0.4351 | 0.8488 |
148
+ | 0.4223 | 77.9394 | 643 | 0.4011 | 0.8779 |
149
+ | 0.4121 | 78.9091 | 651 | 0.4328 | 0.8547 |
150
+ | 0.4164 | 80.0 | 660 | 0.3908 | 0.8857 |
151
+ | 0.4164 | 80.9697 | 668 | 0.3774 | 0.8876 |
152
+ | 0.418 | 81.9394 | 676 | 0.4397 | 0.8643 |
153
+ | 0.3961 | 82.9091 | 684 | 0.4500 | 0.8585 |
154
+ | 0.4035 | 84.0 | 693 | 0.3968 | 0.8624 |
155
+ | 0.4269 | 84.9697 | 701 | 0.4457 | 0.8566 |
156
+ | 0.4269 | 85.9394 | 709 | 0.3987 | 0.8740 |
157
+ | 0.3694 | 86.9091 | 717 | 0.4074 | 0.8760 |
158
+ | 0.3642 | 88.0 | 726 | 0.3781 | 0.9012 |
159
+ | 0.3985 | 88.9697 | 734 | 0.3575 | 0.8934 |
160
+ | 0.4237 | 89.9394 | 742 | 0.4313 | 0.8508 |
161
+ | 0.4156 | 90.9091 | 750 | 0.3504 | 0.8934 |
162
+ | 0.4156 | 92.0 | 759 | 0.4116 | 0.8566 |
163
+ | 0.389 | 92.9697 | 767 | 0.3739 | 0.8779 |
164
+ | 0.3934 | 93.9394 | 775 | 0.3990 | 0.8779 |
165
+ | 0.4231 | 94.9091 | 783 | 0.4164 | 0.8624 |
166
+ | 0.3792 | 96.0 | 792 | 0.3808 | 0.8721 |
167
+ | 0.3928 | 96.9697 | 800 | 0.3534 | 0.8915 |
168
+ | 0.3928 | 97.9394 | 808 | 0.3643 | 0.8798 |
169
+ | 0.4003 | 98.9091 | 816 | 0.4150 | 0.8624 |
170
+ | 0.3929 | 100.0 | 825 | 0.3477 | 0.9050 |
171
+ | 0.3992 | 100.9697 | 833 | 0.4037 | 0.8682 |
172
+ | 0.387 | 101.9394 | 841 | 0.3453 | 0.9050 |
173
+ | 0.387 | 102.9091 | 849 | 0.4012 | 0.8682 |
174
+ | 0.3942 | 104.0 | 858 | 0.3843 | 0.8915 |
175
+ | 0.3794 | 104.9697 | 866 | 0.3478 | 0.8798 |
176
+ | 0.3794 | 105.9394 | 874 | 0.3111 | 0.9167 |
177
+ | 0.396 | 106.9091 | 882 | 0.3588 | 0.8818 |
178
+ | 0.3767 | 108.0 | 891 | 0.3602 | 0.8837 |
179
+ | 0.3767 | 108.6061 | 896 | 0.3784 | 0.8760 |
180
 
181
 
182
  ### Framework versions
183
 
184
+ - Transformers 4.45.0.dev0
185
+ - Pytorch 2.4.0+cu121
186
  - Datasets 2.21.0
187
  - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7500cd4a9b55b113362a19170d105bd00090f5bdbf9484cee8ee2d6004d56ddd
3
  size 343248584
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df16fded57590be918d052de1578c8a9e67c6019d4f33be034226e25293a0a32
3
  size 343248584