Uploading trained parameters, config and model related images
Browse files
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
multi_temporal_crop_classification.png filter=lfs diff=lfs merge=lfs -text
|
multi_temporal_crop_classification.png
ADDED
Git LFS Details
|
multi_temporal_crop_classification_Prithvi_100M.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dist_params = dict(backend='nccl')
|
2 |
+
log_level = 'INFO'
|
3 |
+
load_from = None
|
4 |
+
resume_from = None
|
5 |
+
cudnn_benchmark = True
|
6 |
+
custom_imports = dict(imports=['geospatial_fm'])
|
7 |
+
num_frames = 3
|
8 |
+
img_size = 224
|
9 |
+
num_workers = 2
|
10 |
+
pretrained_weights_path = '/home/ubuntu/hls-loss-weights/Prithvi_100M.pt'
|
11 |
+
num_layers = 6
|
12 |
+
patch_size = 16
|
13 |
+
embed_dim = 768
|
14 |
+
num_heads = 8
|
15 |
+
tubelet_size = 1
|
16 |
+
epochs = 80
|
17 |
+
eval_epoch_interval = 2
|
18 |
+
experiment = 'multiclass_exp_newSplit'
|
19 |
+
work_dir = '/home/ubuntu/clark_gfm_eval/multiclass_exp_newSplit'
|
20 |
+
save_path = '/home/ubuntu/clark_gfm_eval/multiclass_exp_newSplit'
|
21 |
+
gpu_ids = range(0, 1)
|
22 |
+
dataset_type = 'GeospatialDataset'
|
23 |
+
data_root = '/home/ubuntu/hls_cdl_reclassed/'
|
24 |
+
img_norm_cfg = dict(
|
25 |
+
means=[
|
26 |
+
494.905781, 815.239594, 924.335066, 2968.881459, 2634.621962,
|
27 |
+
1739.579917, 494.905781, 815.239594, 924.335066, 2968.881459,
|
28 |
+
2634.621962, 1739.579917, 494.905781, 815.239594, 924.335066,
|
29 |
+
2968.881459, 2634.621962, 1739.579917
|
30 |
+
],
|
31 |
+
stds=[
|
32 |
+
284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808,
|
33 |
+
284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808,
|
34 |
+
284.925432, 357.84876, 575.566823, 896.601013, 951.900334, 921.407808
|
35 |
+
])
|
36 |
+
splits = dict(
|
37 |
+
train=
|
38 |
+
'/home/ubuntu/hls-foundation-os/fine-tuning-examples/data_splits/crop_classification/training_data.txt',
|
39 |
+
val=
|
40 |
+
'/home/ubuntu/hls-foundation-os/fine-tuning-examples/data_splits/crop_classification/validation_data.txt',
|
41 |
+
test=
|
42 |
+
'/home/ubuntu/hls-foundation-os/fine-tuning-examples/data_splits/crop_classification/validation_data.txt'
|
43 |
+
)
|
44 |
+
bands = [0, 1, 2, 3, 4, 5]
|
45 |
+
tile_size = 224
|
46 |
+
orig_nsize = 512
|
47 |
+
crop_size = (224, 224)
|
48 |
+
train_pipeline = [
|
49 |
+
dict(type='LoadGeospatialImageFromFile', to_float32=True),
|
50 |
+
dict(type='LoadGeospatialAnnotations', reduce_zero_label=True),
|
51 |
+
dict(type='RandomFlip', prob=0.5),
|
52 |
+
dict(type='ToTensor', keys=['img', 'gt_semantic_seg']),
|
53 |
+
dict(
|
54 |
+
type='TorchNormalize',
|
55 |
+
means=[
|
56 |
+
494.905781, 815.239594, 924.335066, 2968.881459, 2634.621962,
|
57 |
+
1739.579917, 494.905781, 815.239594, 924.335066, 2968.881459,
|
58 |
+
2634.621962, 1739.579917, 494.905781, 815.239594, 924.335066,
|
59 |
+
2968.881459, 2634.621962, 1739.579917
|
60 |
+
],
|
61 |
+
stds=[
|
62 |
+
284.925432, 357.84876, 575.566823, 896.601013, 951.900334,
|
63 |
+
921.407808, 284.925432, 357.84876, 575.566823, 896.601013,
|
64 |
+
951.900334, 921.407808, 284.925432, 357.84876, 575.566823,
|
65 |
+
896.601013, 951.900334, 921.407808
|
66 |
+
]),
|
67 |
+
dict(type='TorchRandomCrop', crop_size=(224, 224)),
|
68 |
+
dict(type='Reshape', keys=['img'], new_shape=(6, 3, 224, 224)),
|
69 |
+
dict(type='Reshape', keys=['gt_semantic_seg'], new_shape=(1, 224, 224)),
|
70 |
+
dict(
|
71 |
+
type='CastTensor',
|
72 |
+
keys=['gt_semantic_seg'],
|
73 |
+
new_type='torch.LongTensor'),
|
74 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
75 |
+
]
|
76 |
+
val_pipeline = [
|
77 |
+
dict(type='LoadGeospatialImageFromFile', to_float32=True),
|
78 |
+
dict(type='LoadGeospatialAnnotations', reduce_zero_label=True),
|
79 |
+
dict(type='ToTensor', keys=['img', 'gt_semantic_seg']),
|
80 |
+
dict(
|
81 |
+
type='TorchNormalize',
|
82 |
+
means=[
|
83 |
+
494.905781, 815.239594, 924.335066, 2968.881459, 2634.621962,
|
84 |
+
1739.579917, 494.905781, 815.239594, 924.335066, 2968.881459,
|
85 |
+
2634.621962, 1739.579917, 494.905781, 815.239594, 924.335066,
|
86 |
+
2968.881459, 2634.621962, 1739.579917
|
87 |
+
],
|
88 |
+
stds=[
|
89 |
+
284.925432, 357.84876, 575.566823, 896.601013, 951.900334,
|
90 |
+
921.407808, 284.925432, 357.84876, 575.566823, 896.601013,
|
91 |
+
951.900334, 921.407808, 284.925432, 357.84876, 575.566823,
|
92 |
+
896.601013, 951.900334, 921.407808
|
93 |
+
]),
|
94 |
+
dict(type='TorchRandomCrop', crop_size=(224, 224)),
|
95 |
+
dict(type='Reshape', keys=['img'], new_shape=(6, 3, 224, 224)),
|
96 |
+
dict(type='Reshape', keys=['gt_semantic_seg'], new_shape=(1, 224, 224)),
|
97 |
+
dict(
|
98 |
+
type='CastTensor',
|
99 |
+
keys=['gt_semantic_seg'],
|
100 |
+
new_type='torch.LongTensor'),
|
101 |
+
dict(
|
102 |
+
type='Collect',
|
103 |
+
keys=['img', 'gt_semantic_seg'],
|
104 |
+
meta_keys=[
|
105 |
+
'img_info', 'ann_info', 'seg_fields', 'img_prefix', 'seg_prefix',
|
106 |
+
'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape',
|
107 |
+
'pad_shape', 'scale_factor', 'img_norm_cfg', 'gt_semantic_seg'
|
108 |
+
])
|
109 |
+
]
|
110 |
+
test_pipeline = [
|
111 |
+
dict(type='LoadGeospatialImageFromFile', to_float32=True),
|
112 |
+
dict(type='ToTensor', keys=['img']),
|
113 |
+
dict(
|
114 |
+
type='TorchNormalize',
|
115 |
+
means=[
|
116 |
+
494.905781, 815.239594, 924.335066, 2968.881459, 2634.621962,
|
117 |
+
1739.579917, 494.905781, 815.239594, 924.335066, 2968.881459,
|
118 |
+
2634.621962, 1739.579917, 494.905781, 815.239594, 924.335066,
|
119 |
+
2968.881459, 2634.621962, 1739.579917
|
120 |
+
],
|
121 |
+
stds=[
|
122 |
+
284.925432, 357.84876, 575.566823, 896.601013, 951.900334,
|
123 |
+
921.407808, 284.925432, 357.84876, 575.566823, 896.601013,
|
124 |
+
951.900334, 921.407808, 284.925432, 357.84876, 575.566823,
|
125 |
+
896.601013, 951.900334, 921.407808
|
126 |
+
]),
|
127 |
+
dict(
|
128 |
+
type='Reshape',
|
129 |
+
keys=['img'],
|
130 |
+
new_shape=(6, 3, -1, -1),
|
131 |
+
look_up=dict({
|
132 |
+
'2': 1,
|
133 |
+
'3': 2
|
134 |
+
})),
|
135 |
+
dict(type='CastTensor', keys=['img'], new_type='torch.FloatTensor'),
|
136 |
+
dict(
|
137 |
+
type='CollectTestList',
|
138 |
+
keys=['img'],
|
139 |
+
meta_keys=[
|
140 |
+
'img_info', 'seg_fields', 'img_prefix', 'seg_prefix', 'filename',
|
141 |
+
'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape',
|
142 |
+
'scale_factor', 'img_norm_cfg'
|
143 |
+
])
|
144 |
+
]
|
145 |
+
CLASSES = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
|
146 |
+
data = dict(
|
147 |
+
samples_per_gpu=2,
|
148 |
+
workers_per_gpu=1,
|
149 |
+
train=dict(
|
150 |
+
type='GeospatialDataset',
|
151 |
+
CLASSES=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13),
|
152 |
+
reduce_zero_label=True,
|
153 |
+
data_root='/home/ubuntu/hls_cdl_reclassed/',
|
154 |
+
img_dir='/home/ubuntu/hls_cdl_reclassed/training_chips',
|
155 |
+
ann_dir='/home/ubuntu/hls_cdl_reclassed/training_chips',
|
156 |
+
pipeline=[
|
157 |
+
dict(type='LoadGeospatialImageFromFile', to_float32=True),
|
158 |
+
dict(type='LoadGeospatialAnnotations', reduce_zero_label=True),
|
159 |
+
dict(type='RandomFlip', prob=0.5),
|
160 |
+
dict(type='ToTensor', keys=['img', 'gt_semantic_seg']),
|
161 |
+
dict(
|
162 |
+
type='TorchNormalize',
|
163 |
+
means=[
|
164 |
+
494.905781, 815.239594, 924.335066, 2968.881459,
|
165 |
+
2634.621962, 1739.579917, 494.905781, 815.239594,
|
166 |
+
924.335066, 2968.881459, 2634.621962, 1739.579917,
|
167 |
+
494.905781, 815.239594, 924.335066, 2968.881459,
|
168 |
+
2634.621962, 1739.579917
|
169 |
+
],
|
170 |
+
stds=[
|
171 |
+
284.925432, 357.84876, 575.566823, 896.601013, 951.900334,
|
172 |
+
921.407808, 284.925432, 357.84876, 575.566823, 896.601013,
|
173 |
+
951.900334, 921.407808, 284.925432, 357.84876, 575.566823,
|
174 |
+
896.601013, 951.900334, 921.407808
|
175 |
+
]),
|
176 |
+
dict(type='TorchRandomCrop', crop_size=(224, 224)),
|
177 |
+
dict(type='Reshape', keys=['img'], new_shape=(6, 3, 224, 224)),
|
178 |
+
dict(
|
179 |
+
type='Reshape',
|
180 |
+
keys=['gt_semantic_seg'],
|
181 |
+
new_shape=(1, 224, 224)),
|
182 |
+
dict(
|
183 |
+
type='CastTensor',
|
184 |
+
keys=['gt_semantic_seg'],
|
185 |
+
new_type='torch.LongTensor'),
|
186 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
187 |
+
],
|
188 |
+
img_suffix='_merged.tif',
|
189 |
+
seg_map_suffix='.mask.tif',
|
190 |
+
split=
|
191 |
+
'/home/ubuntu/hls-foundation-os/fine-tuning-examples/data_splits/crop_classification/training_data.txt'
|
192 |
+
),
|
193 |
+
val=dict(
|
194 |
+
type='GeospatialDataset',
|
195 |
+
CLASSES=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13),
|
196 |
+
reduce_zero_label=True,
|
197 |
+
data_root='/home/ubuntu/hls_cdl_reclassed/',
|
198 |
+
img_dir='/home/ubuntu/hls_cdl_reclassed/validation_chips',
|
199 |
+
ann_dir='/home/ubuntu/hls_cdl_reclassed/validation_chips',
|
200 |
+
pipeline=[
|
201 |
+
dict(type='LoadGeospatialImageFromFile', to_float32=True),
|
202 |
+
dict(type='ToTensor', keys=['img']),
|
203 |
+
dict(
|
204 |
+
type='TorchNormalize',
|
205 |
+
means=[
|
206 |
+
494.905781, 815.239594, 924.335066, 2968.881459,
|
207 |
+
2634.621962, 1739.579917, 494.905781, 815.239594,
|
208 |
+
924.335066, 2968.881459, 2634.621962, 1739.579917,
|
209 |
+
494.905781, 815.239594, 924.335066, 2968.881459,
|
210 |
+
2634.621962, 1739.579917
|
211 |
+
],
|
212 |
+
stds=[
|
213 |
+
284.925432, 357.84876, 575.566823, 896.601013, 951.900334,
|
214 |
+
921.407808, 284.925432, 357.84876, 575.566823, 896.601013,
|
215 |
+
951.900334, 921.407808, 284.925432, 357.84876, 575.566823,
|
216 |
+
896.601013, 951.900334, 921.407808
|
217 |
+
]),
|
218 |
+
dict(
|
219 |
+
type='Reshape',
|
220 |
+
keys=['img'],
|
221 |
+
new_shape=(6, 3, -1, -1),
|
222 |
+
look_up=dict({
|
223 |
+
'2': 1,
|
224 |
+
'3': 2
|
225 |
+
})),
|
226 |
+
dict(
|
227 |
+
type='CastTensor', keys=['img'], new_type='torch.FloatTensor'),
|
228 |
+
dict(
|
229 |
+
type='CollectTestList',
|
230 |
+
keys=['img'],
|
231 |
+
meta_keys=[
|
232 |
+
'img_info', 'seg_fields', 'img_prefix', 'seg_prefix',
|
233 |
+
'filename', 'ori_filename', 'img', 'img_shape',
|
234 |
+
'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg'
|
235 |
+
])
|
236 |
+
],
|
237 |
+
img_suffix='_merged.tif',
|
238 |
+
seg_map_suffix='.mask.tif',
|
239 |
+
split=
|
240 |
+
'/home/ubuntu/hls-foundation-os/fine-tuning-examples/data_splits/crop_classification/validation_data.txt'
|
241 |
+
),
|
242 |
+
test=dict(
|
243 |
+
type='GeospatialDataset',
|
244 |
+
CLASSES=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13),
|
245 |
+
reduce_zero_label=True,
|
246 |
+
data_root='/home/ubuntu/hls_cdl_reclassed/',
|
247 |
+
img_dir='/home/ubuntu/hls_cdl_reclassed/validation_chips',
|
248 |
+
ann_dir='/home/ubuntu/hls_cdl_reclassed/validation_chips',
|
249 |
+
pipeline=[
|
250 |
+
dict(type='LoadGeospatialImageFromFile', to_float32=True),
|
251 |
+
dict(type='ToTensor', keys=['img']),
|
252 |
+
dict(
|
253 |
+
type='TorchNormalize',
|
254 |
+
means=[
|
255 |
+
494.905781, 815.239594, 924.335066, 2968.881459,
|
256 |
+
2634.621962, 1739.579917, 494.905781, 815.239594,
|
257 |
+
924.335066, 2968.881459, 2634.621962, 1739.579917,
|
258 |
+
494.905781, 815.239594, 924.335066, 2968.881459,
|
259 |
+
2634.621962, 1739.579917
|
260 |
+
],
|
261 |
+
stds=[
|
262 |
+
284.925432, 357.84876, 575.566823, 896.601013, 951.900334,
|
263 |
+
921.407808, 284.925432, 357.84876, 575.566823, 896.601013,
|
264 |
+
951.900334, 921.407808, 284.925432, 357.84876, 575.566823,
|
265 |
+
896.601013, 951.900334, 921.407808
|
266 |
+
]),
|
267 |
+
dict(
|
268 |
+
type='Reshape',
|
269 |
+
keys=['img'],
|
270 |
+
new_shape=(6, 3, -1, -1),
|
271 |
+
look_up=dict({
|
272 |
+
'2': 1,
|
273 |
+
'3': 2
|
274 |
+
})),
|
275 |
+
dict(
|
276 |
+
type='CastTensor', keys=['img'], new_type='torch.FloatTensor'),
|
277 |
+
dict(
|
278 |
+
type='CollectTestList',
|
279 |
+
keys=['img'],
|
280 |
+
meta_keys=[
|
281 |
+
'img_info', 'seg_fields', 'img_prefix', 'seg_prefix',
|
282 |
+
'filename', 'ori_filename', 'img', 'img_shape',
|
283 |
+
'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg'
|
284 |
+
])
|
285 |
+
],
|
286 |
+
img_suffix='_merged.tif',
|
287 |
+
seg_map_suffix='.mask.tif',
|
288 |
+
split=
|
289 |
+
'/home/ubuntu/hls-foundation-os/fine-tuning-examples/data_splits/crop_classification/validation_data.txt'
|
290 |
+
))
|
291 |
+
optimizer = dict(
|
292 |
+
type='Adam', lr=1.5e-05, betas=(0.9, 0.999), weight_decay=0.05)
|
293 |
+
optimizer_config = dict(grad_clip=None)
|
294 |
+
lr_config = dict(
|
295 |
+
policy='poly',
|
296 |
+
warmup='linear',
|
297 |
+
warmup_iters=1500,
|
298 |
+
warmup_ratio=1e-06,
|
299 |
+
power=1.0,
|
300 |
+
min_lr=0.0,
|
301 |
+
by_epoch=False)
|
302 |
+
log_config = dict(
|
303 |
+
interval=10,
|
304 |
+
hooks=[dict(type='TextLoggerHook'),
|
305 |
+
dict(type='TensorboardLoggerHook')])
|
306 |
+
checkpoint_config = dict(
|
307 |
+
by_epoch=True,
|
308 |
+
interval=10,
|
309 |
+
out_dir='/home/ubuntu/clark_gfm_eval/multiclass_exp_newSplit')
|
310 |
+
evaluation = dict(interval=2, metric='mIoU', pre_eval=True, save_best='mIoU')
|
311 |
+
reduce_train_set = dict(reduce_train_set=False)
|
312 |
+
reduce_factor = dict(reduce_factor=1)
|
313 |
+
runner = dict(type='EpochBasedRunner', max_epochs=80)
|
314 |
+
workflow = [('train', 1), ('val', 1)]
|
315 |
+
norm_cfg = dict(type='BN', requires_grad=True)
|
316 |
+
loss_weights_multi = [
|
317 |
+
0.386375, 0.661126, 0.548184, 0.640482, 0.876862, 0.925186, 3.249462,
|
318 |
+
1.542289, 2.175141, 2.272419, 3.062762, 3.626097, 1.198702
|
319 |
+
]
|
320 |
+
loss_func = dict(
|
321 |
+
type='CrossEntropyLoss',
|
322 |
+
use_sigmoid=False,
|
323 |
+
class_weight=[
|
324 |
+
0.386375, 0.661126, 0.548184, 0.640482, 0.876862, 0.925186, 3.249462,
|
325 |
+
1.542289, 2.175141, 2.272419, 3.062762, 3.626097, 1.198702
|
326 |
+
],
|
327 |
+
avg_non_ignore=True)
|
328 |
+
output_embed_dim = 2304
|
329 |
+
model = dict(
|
330 |
+
type='TemporalEncoderDecoder',
|
331 |
+
frozen_backbone=False,
|
332 |
+
backbone=dict(
|
333 |
+
type='TemporalViTEncoder',
|
334 |
+
pretrained='/home/ubuntu/hls-loss-weights/Prithvi_100M.pt',
|
335 |
+
img_size=224,
|
336 |
+
patch_size=16,
|
337 |
+
num_frames=3,
|
338 |
+
tubelet_size=1,
|
339 |
+
in_chans=6,
|
340 |
+
embed_dim=768,
|
341 |
+
depth=6,
|
342 |
+
num_heads=8,
|
343 |
+
mlp_ratio=4.0,
|
344 |
+
norm_pix_loss=False),
|
345 |
+
neck=dict(
|
346 |
+
type='ConvTransformerTokensToEmbeddingNeck',
|
347 |
+
embed_dim=2304,
|
348 |
+
output_embed_dim=2304,
|
349 |
+
drop_cls_token=True,
|
350 |
+
Hp=14,
|
351 |
+
Wp=14),
|
352 |
+
decode_head=dict(
|
353 |
+
num_classes=13,
|
354 |
+
in_channels=2304,
|
355 |
+
type='FCNHead',
|
356 |
+
in_index=-1,
|
357 |
+
channels=256,
|
358 |
+
num_convs=1,
|
359 |
+
concat_input=False,
|
360 |
+
dropout_ratio=0.1,
|
361 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
362 |
+
align_corners=False,
|
363 |
+
loss_decode=dict(
|
364 |
+
type='CrossEntropyLoss',
|
365 |
+
use_sigmoid=False,
|
366 |
+
class_weight=[
|
367 |
+
0.386375, 0.661126, 0.548184, 0.640482, 0.876862, 0.925186,
|
368 |
+
3.249462, 1.542289, 2.175141, 2.272419, 3.062762, 3.626097,
|
369 |
+
1.198702
|
370 |
+
],
|
371 |
+
avg_non_ignore=True)),
|
372 |
+
auxiliary_head=dict(
|
373 |
+
num_classes=13,
|
374 |
+
in_channels=2304,
|
375 |
+
type='FCNHead',
|
376 |
+
in_index=-1,
|
377 |
+
channels=256,
|
378 |
+
num_convs=2,
|
379 |
+
concat_input=False,
|
380 |
+
dropout_ratio=0.1,
|
381 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
382 |
+
align_corners=False,
|
383 |
+
loss_decode=dict(
|
384 |
+
type='CrossEntropyLoss',
|
385 |
+
use_sigmoid=False,
|
386 |
+
class_weight=[
|
387 |
+
0.386375, 0.661126, 0.548184, 0.640482, 0.876862, 0.925186,
|
388 |
+
3.249462, 1.542289, 2.175141, 2.272419, 3.062762, 3.626097,
|
389 |
+
1.198702
|
390 |
+
],
|
391 |
+
avg_non_ignore=True)),
|
392 |
+
train_cfg=dict(),
|
393 |
+
test_cfg=dict(mode='slide', stride=(112, 112), crop_size=(224, 224)))
|
394 |
+
auto_resume = False
|
multi_temporal_crop_classification_best_mIoU_epoch_66.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec4bbbdca96bbd7a588c78b4a6c98dfa5969e4f870b705fa256047b7203a703d
|
3 |
+
size 1680477067
|
multi_temporal_crop_classification_latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:298953c90e6fd2c135303644e548c479c30eddccb81f350ce3b992b8df2aacb7
|
3 |
+
size 1680477067
|