iLOVE2D commited on
Commit
bf66bfe
1 Parent(s): 600e855

Upload 16 files

Browse files

update all mode weights

model_collections/.DS_Store ADDED
Binary file (10.2 kB). View file
 
model_collections/gemma/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: google/gemma-7b-it
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
model_collections/gemma/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/gemma-7b-it",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "q_proj",
23
+ "k_proj",
24
+ "o_proj",
25
+ "v_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
model_collections/gemma/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc7d3de01d46be5f9b9052a82d9792e7d5459d76c2725c2800728eaf3064f890
3
+ size 25719896
model_collections/llamapro/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: TencentARC/LLaMA-Pro-8B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
model_collections/llamapro/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TencentARC/LLaMA-Pro-8B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "k_proj",
23
+ "o_proj",
24
+ "q_proj",
25
+ "v_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
model_collections/llamapro/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:561a6d3d27f8a0703249728ad559ee7cb32ca684088629df47cfcdee5d050c9f
3
+ size 41985712
model_collections/mistral/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
model_collections/mistral/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "o_proj",
23
+ "k_proj",
24
+ "q_proj",
25
+ "v_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
model_collections/mistral/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92f87345261ffb43f17bb23c3fc241d44b03d0c5de67da62cdd69deb241c78a1
3
+ size 27297032
model_collections/protein_inference/.DS_Store ADDED
Binary file (6.15 kB). View file
 
model_collections/protein_inference/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./temp/llava-v1.5-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 256,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "k_proj",
23
+ "gate_proj",
24
+ "q_proj",
25
+ "o_proj",
26
+ "up_proj",
27
+ "down_proj",
28
+ "v_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
model_collections/protein_inference/config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./temp/llava-v1.5-7b",
3
+ "architectures": [
4
+ "LlavaLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 11008,
17
+ "max_length": 4096,
18
+ "max_position_embeddings": 4096,
19
+ "mm_hidden_size": 1024,
20
+ "mm_patch_merge_type": "flat",
21
+ "mm_projector_lr": 2e-05,
22
+ "mm_projector_type": "mlp2x_gelu",
23
+ "mm_resampler_type": null,
24
+ "mm_use_im_patch_token": false,
25
+ "mm_use_im_start_end": false,
26
+ "mm_vision_select_feature": "patch",
27
+ "mm_vision_select_layer": -2,
28
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
29
+ "model_type": "llava_llama",
30
+ "num_attention_heads": 32,
31
+ "num_hidden_layers": 32,
32
+ "num_key_value_heads": 32,
33
+ "pad_token_id": 0,
34
+ "pretraining_tp": 1,
35
+ "rms_norm_eps": 1e-05,
36
+ "rope_scaling": null,
37
+ "rope_theta": 10000.0,
38
+ "tie_word_embeddings": false,
39
+ "tokenizer_model_max_length": 512,
40
+ "tokenizer_padding_side": "right",
41
+ "torch_dtype": "float16",
42
+ "transformers_version": "4.37.2",
43
+ "tune_mm_mlp_adapter": false,
44
+ "tune_mm_vision_resampler": false,
45
+ "unfreeze_mm_vision_tower": false,
46
+ "use_cache": true,
47
+ "use_mm_proj": true,
48
+ "vocab_size": 32000
49
+ }
model_collections/spatial_inference/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./temp/llava-v1.5-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 256,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "k_proj",
23
+ "gate_proj",
24
+ "down_proj",
25
+ "o_proj",
26
+ "up_proj",
27
+ "q_proj",
28
+ "v_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
model_collections/spatial_inference/config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./temp/llava-v1.5-7b",
3
+ "architectures": [
4
+ "LlavaLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "image_aspect_ratio": "pad",
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 11008,
17
+ "max_length": 4096,
18
+ "max_position_embeddings": 4096,
19
+ "mm_hidden_size": 1024,
20
+ "mm_patch_merge_type": "flat",
21
+ "mm_projector_lr": 2e-05,
22
+ "mm_projector_type": "mlp2x_gelu",
23
+ "mm_resampler_type": null,
24
+ "mm_use_im_patch_token": false,
25
+ "mm_use_im_start_end": false,
26
+ "mm_vision_select_feature": "patch",
27
+ "mm_vision_select_layer": -2,
28
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
29
+ "model_type": "llava_llama",
30
+ "num_attention_heads": 32,
31
+ "num_hidden_layers": 32,
32
+ "num_key_value_heads": 32,
33
+ "pad_token_id": 0,
34
+ "pretraining_tp": 1,
35
+ "rms_norm_eps": 1e-05,
36
+ "rope_scaling": null,
37
+ "rope_theta": 10000.0,
38
+ "tie_word_embeddings": false,
39
+ "tokenizer_model_max_length": 1024,
40
+ "tokenizer_padding_side": "right",
41
+ "torch_dtype": "float16",
42
+ "transformers_version": "4.37.2",
43
+ "tune_mm_mlp_adapter": false,
44
+ "tune_mm_vision_resampler": false,
45
+ "unfreeze_mm_vision_tower": false,
46
+ "use_cache": true,
47
+ "use_mm_proj": true,
48
+ "vocab_size": 32000
49
+ }
model_collections/spatial_inference/trainer_state.json ADDED
@@ -0,0 +1,2610 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 9.82857142857143,
5
+ "eval_steps": 500,
6
+ "global_step": 430,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "learning_rate": 1.5384615384615387e-05,
14
+ "loss": 5.1473,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.05,
19
+ "learning_rate": 3.0769230769230774e-05,
20
+ "loss": 5.1654,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.07,
25
+ "learning_rate": 4.615384615384616e-05,
26
+ "loss": 4.4404,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.09,
31
+ "learning_rate": 6.153846153846155e-05,
32
+ "loss": 2.1218,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.11,
37
+ "learning_rate": 7.692307692307693e-05,
38
+ "loss": 0.7891,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.14,
43
+ "learning_rate": 9.230769230769232e-05,
44
+ "loss": 0.4084,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.16,
49
+ "learning_rate": 0.0001076923076923077,
50
+ "loss": 0.2285,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.18,
55
+ "learning_rate": 0.0001230769230769231,
56
+ "loss": 0.2082,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.21,
61
+ "learning_rate": 0.00013846153846153847,
62
+ "loss": 0.1934,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.23,
67
+ "learning_rate": 0.00015384615384615385,
68
+ "loss": 0.1951,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.25,
73
+ "learning_rate": 0.00016923076923076923,
74
+ "loss": 0.1867,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.27,
79
+ "learning_rate": 0.00018461538461538463,
80
+ "loss": 0.1931,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.3,
85
+ "learning_rate": 0.0002,
86
+ "loss": 0.1895,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.32,
91
+ "learning_rate": 0.00019999716210981734,
92
+ "loss": 0.16,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.34,
97
+ "learning_rate": 0.00019998864860034169,
98
+ "loss": 0.2126,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.37,
103
+ "learning_rate": 0.0001999744599547812,
104
+ "loss": 0.1772,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.39,
109
+ "learning_rate": 0.0001999545969784522,
110
+ "loss": 0.1949,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.41,
115
+ "learning_rate": 0.00019992906079873365,
116
+ "loss": 0.1923,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.43,
121
+ "learning_rate": 0.00019989785286500295,
122
+ "loss": 0.1709,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.46,
127
+ "learning_rate": 0.0001998609749485539,
128
+ "loss": 0.1823,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.48,
133
+ "learning_rate": 0.0001998184291424961,
134
+ "loss": 0.1656,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.5,
139
+ "learning_rate": 0.00019977021786163598,
140
+ "loss": 0.194,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.53,
145
+ "learning_rate": 0.00019971634384234003,
146
+ "loss": 0.174,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.55,
151
+ "learning_rate": 0.00019965681014237917,
152
+ "loss": 0.1699,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.57,
157
+ "learning_rate": 0.00019959162014075553,
158
+ "loss": 0.1771,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.59,
163
+ "learning_rate": 0.00019952077753751036,
164
+ "loss": 0.1942,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.62,
169
+ "learning_rate": 0.00019944428635351426,
170
+ "loss": 0.1818,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.64,
175
+ "learning_rate": 0.00019936215093023884,
176
+ "loss": 0.1956,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.66,
181
+ "learning_rate": 0.0001992743759295103,
182
+ "loss": 0.1738,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.69,
187
+ "learning_rate": 0.00019918096633324492,
188
+ "loss": 0.1897,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.71,
193
+ "learning_rate": 0.0001990819274431662,
194
+ "loss": 0.1558,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.73,
199
+ "learning_rate": 0.00019897726488050406,
200
+ "loss": 0.2183,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.75,
205
+ "learning_rate": 0.00019886698458567562,
206
+ "loss": 0.1844,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.78,
211
+ "learning_rate": 0.00019875109281794825,
212
+ "loss": 0.1774,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.8,
217
+ "learning_rate": 0.00019862959615508417,
218
+ "loss": 0.1709,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.82,
223
+ "learning_rate": 0.00019850250149296703,
224
+ "loss": 0.2023,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.85,
229
+ "learning_rate": 0.00019836981604521076,
230
+ "loss": 0.1717,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.87,
235
+ "learning_rate": 0.00019823154734274997,
236
+ "loss": 0.1751,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.89,
241
+ "learning_rate": 0.0001980877032334125,
242
+ "loss": 0.1903,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.91,
247
+ "learning_rate": 0.00019793829188147406,
248
+ "loss": 0.2017,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.94,
253
+ "learning_rate": 0.00019778332176719483,
254
+ "loss": 0.1651,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.96,
259
+ "learning_rate": 0.00019762280168633814,
260
+ "loss": 0.1913,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.98,
265
+ "learning_rate": 0.0001974567407496712,
266
+ "loss": 0.1749,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 1.01,
271
+ "learning_rate": 0.0001972851483824481,
272
+ "loss": 0.1953,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 1.03,
277
+ "learning_rate": 0.00019710803432387465,
278
+ "loss": 0.2126,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 1.05,
283
+ "learning_rate": 0.00019692540862655585,
284
+ "loss": 0.181,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 1.07,
289
+ "learning_rate": 0.0001967372816559252,
290
+ "loss": 0.176,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 1.1,
295
+ "learning_rate": 0.00019654366408965635,
296
+ "loss": 0.1655,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 1.12,
301
+ "learning_rate": 0.00019634456691705702,
302
+ "loss": 0.1676,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 1.14,
307
+ "learning_rate": 0.00019614000143844558,
308
+ "loss": 0.1438,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 1.17,
313
+ "learning_rate": 0.0001959299792645092,
314
+ "loss": 0.1915,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 1.19,
319
+ "learning_rate": 0.00019571451231564525,
320
+ "loss": 0.2314,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 1.21,
325
+ "learning_rate": 0.00019549361282128445,
326
+ "loss": 0.1736,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 1.23,
331
+ "learning_rate": 0.00019526729331919697,
332
+ "loss": 0.1765,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 1.26,
337
+ "learning_rate": 0.00019503556665478067,
338
+ "loss": 0.1969,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 1.28,
343
+ "learning_rate": 0.00019479844598033202,
344
+ "loss": 0.1968,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 1.3,
349
+ "learning_rate": 0.0001945559447542998,
350
+ "loss": 0.1724,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 1.33,
355
+ "learning_rate": 0.00019430807674052092,
356
+ "loss": 0.2096,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 1.35,
361
+ "learning_rate": 0.00019405485600743942,
362
+ "loss": 0.1861,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 1.37,
367
+ "learning_rate": 0.00019379629692730798,
368
+ "loss": 0.1752,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 1.39,
373
+ "learning_rate": 0.00019353241417537214,
374
+ "loss": 0.1746,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 1.42,
379
+ "learning_rate": 0.00019326322272903722,
380
+ "loss": 0.175,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 1.44,
385
+ "learning_rate": 0.00019298873786701857,
386
+ "loss": 0.1752,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 1.46,
391
+ "learning_rate": 0.00019270897516847403,
392
+ "loss": 0.1719,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 1.49,
397
+ "learning_rate": 0.00019242395051212,
398
+ "loss": 0.1814,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 1.51,
403
+ "learning_rate": 0.00019213368007532986,
404
+ "loss": 0.1792,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 1.53,
409
+ "learning_rate": 0.00019183818033321614,
410
+ "loss": 0.1683,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 1.55,
415
+ "learning_rate": 0.00019153746805769512,
416
+ "loss": 0.175,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 1.58,
421
+ "learning_rate": 0.00019123156031653515,
422
+ "loss": 0.1558,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 1.6,
427
+ "learning_rate": 0.00019092047447238773,
428
+ "loss": 0.1907,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 1.62,
433
+ "learning_rate": 0.00019060422818180207,
434
+ "loss": 0.2572,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 1.65,
439
+ "learning_rate": 0.00019028283939422308,
440
+ "loss": 0.1781,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 1.67,
445
+ "learning_rate": 0.0001899563263509725,
446
+ "loss": 0.1659,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 1.69,
451
+ "learning_rate": 0.00018962470758421342,
452
+ "loss": 0.174,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 1.71,
457
+ "learning_rate": 0.0001892880019158988,
458
+ "loss": 0.1795,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 1.74,
463
+ "learning_rate": 0.00018894622845670283,
464
+ "loss": 0.1712,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 1.76,
469
+ "learning_rate": 0.00018859940660493634,
470
+ "loss": 0.1628,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 1.78,
475
+ "learning_rate": 0.00018824755604544594,
476
+ "loss": 0.1901,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 1.81,
481
+ "learning_rate": 0.0001878906967484966,
482
+ "loss": 0.1549,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 1.83,
487
+ "learning_rate": 0.0001875288489686382,
488
+ "loss": 0.1972,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 1.85,
493
+ "learning_rate": 0.00018716203324355607,
494
+ "loss": 0.1758,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 1.87,
499
+ "learning_rate": 0.00018679027039290497,
500
+ "loss": 0.1772,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 1.9,
505
+ "learning_rate": 0.0001864135815171279,
506
+ "loss": 0.1839,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 1.92,
511
+ "learning_rate": 0.00018603198799625807,
512
+ "loss": 0.192,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 1.94,
517
+ "learning_rate": 0.00018564551148870563,
518
+ "loss": 0.1795,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 1.97,
523
+ "learning_rate": 0.00018525417393002824,
524
+ "loss": 0.1731,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 1.99,
529
+ "learning_rate": 0.00018485799753168634,
530
+ "loss": 0.1965,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 2.01,
535
+ "learning_rate": 0.00018445700477978205,
536
+ "loss": 0.214,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 2.03,
541
+ "learning_rate": 0.0001840512184337833,
542
+ "loss": 0.2024,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 2.06,
547
+ "learning_rate": 0.00018364066152523183,
548
+ "loss": 0.1786,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 2.08,
553
+ "learning_rate": 0.00018322535735643605,
554
+ "loss": 0.1938,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 2.1,
559
+ "learning_rate": 0.00018280532949914842,
560
+ "loss": 0.1634,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 2.13,
565
+ "learning_rate": 0.0001823806017932276,
566
+ "loss": 0.1655,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 2.15,
571
+ "learning_rate": 0.00018195119834528534,
572
+ "loss": 0.1635,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 2.17,
577
+ "learning_rate": 0.00018151714352731822,
578
+ "loss": 0.1938,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 2.19,
583
+ "learning_rate": 0.00018107846197532433,
584
+ "loss": 0.1696,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 2.22,
589
+ "learning_rate": 0.00018063517858790516,
590
+ "loss": 0.1806,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 2.24,
595
+ "learning_rate": 0.00018018731852485206,
596
+ "loss": 0.1826,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 2.26,
601
+ "learning_rate": 0.00017973490720571864,
602
+ "loss": 0.1976,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 2.29,
607
+ "learning_rate": 0.00017927797030837768,
608
+ "loss": 0.1815,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 2.31,
613
+ "learning_rate": 0.00017881653376756394,
614
+ "loss": 0.1818,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 2.33,
619
+ "learning_rate": 0.0001783506237734019,
620
+ "loss": 0.1649,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 2.35,
625
+ "learning_rate": 0.00017788026676991963,
626
+ "loss": 0.1684,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 2.38,
631
+ "learning_rate": 0.00017740548945354752,
632
+ "loss": 0.1517,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 2.4,
637
+ "learning_rate": 0.00017692631877160326,
638
+ "loss": 0.1871,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 2.42,
643
+ "learning_rate": 0.0001764427819207624,
644
+ "loss": 0.1921,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 2.45,
649
+ "learning_rate": 0.0001759549063455145,
650
+ "loss": 0.1659,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 2.47,
655
+ "learning_rate": 0.00017546271973660574,
656
+ "loss": 0.1807,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 2.49,
661
+ "learning_rate": 0.000174966250029467,
662
+ "loss": 0.1808,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 2.51,
667
+ "learning_rate": 0.00017446552540262844,
668
+ "loss": 0.1844,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 2.54,
673
+ "learning_rate": 0.0001739605742761201,
674
+ "loss": 0.174,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 2.56,
679
+ "learning_rate": 0.00017345142530985887,
680
+ "loss": 0.1752,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 2.58,
685
+ "learning_rate": 0.00017293810740202182,
686
+ "loss": 0.1788,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 2.61,
691
+ "learning_rate": 0.00017242064968740598,
692
+ "loss": 0.1748,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 2.63,
697
+ "learning_rate": 0.00017189908153577473,
698
+ "loss": 0.1711,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 2.65,
703
+ "learning_rate": 0.0001713734325501908,
704
+ "loss": 0.1741,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 2.67,
709
+ "learning_rate": 0.00017084373256533603,
710
+ "loss": 0.1779,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 2.7,
715
+ "learning_rate": 0.00017031001164581828,
716
+ "loss": 0.1761,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 2.72,
721
+ "learning_rate": 0.00016977230008446466,
722
+ "loss": 0.1771,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 2.74,
727
+ "learning_rate": 0.00016923062840060234,
728
+ "loss": 0.1682,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 2.77,
733
+ "learning_rate": 0.00016868502733832644,
734
+ "loss": 0.175,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 2.79,
739
+ "learning_rate": 0.00016813552786475495,
740
+ "loss": 0.1804,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 2.81,
745
+ "learning_rate": 0.00016758216116827105,
746
+ "loss": 0.1724,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 2.83,
751
+ "learning_rate": 0.0001670249586567531,
752
+ "loss": 0.2074,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 2.86,
757
+ "learning_rate": 0.00016646395195579178,
758
+ "loss": 0.1881,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 2.88,
763
+ "learning_rate": 0.00016589917290689532,
764
+ "loss": 0.1791,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 2.9,
769
+ "learning_rate": 0.00016533065356568206,
770
+ "loss": 0.1841,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 2.93,
775
+ "learning_rate": 0.00016475842620006118,
776
+ "loss": 0.1779,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 2.95,
781
+ "learning_rate": 0.0001641825232884011,
782
+ "loss": 0.1812,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 2.97,
787
+ "learning_rate": 0.0001636029775176862,
788
+ "loss": 0.1699,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 2.99,
793
+ "learning_rate": 0.0001630198217816616,
794
+ "loss": 0.1741,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 3.02,
799
+ "learning_rate": 0.000162433089178966,
800
+ "loss": 0.1683,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 3.04,
805
+ "learning_rate": 0.0001618428130112533,
806
+ "loss": 0.1808,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 3.06,
811
+ "learning_rate": 0.0001612490267813023,
812
+ "loss": 0.1663,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 3.09,
817
+ "learning_rate": 0.0001606517641911153,
818
+ "loss": 0.1684,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 3.11,
823
+ "learning_rate": 0.00016005105914000507,
824
+ "loss": 0.1675,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 3.13,
829
+ "learning_rate": 0.00015944694572267096,
830
+ "loss": 0.1706,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 3.15,
835
+ "learning_rate": 0.00015883945822726372,
836
+ "loss": 0.1773,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 3.18,
841
+ "learning_rate": 0.00015822863113343935,
842
+ "loss": 0.1763,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 3.2,
847
+ "learning_rate": 0.00015761449911040208,
848
+ "loss": 0.1799,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 3.22,
853
+ "learning_rate": 0.00015699709701493667,
854
+ "loss": 0.1684,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 3.25,
859
+ "learning_rate": 0.0001563764598894301,
860
+ "loss": 0.1742,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 3.27,
865
+ "learning_rate": 0.0001557526229598824,
866
+ "loss": 0.1751,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 3.29,
871
+ "learning_rate": 0.0001551256216339076,
872
+ "loss": 0.1754,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 3.31,
877
+ "learning_rate": 0.00015449549149872376,
878
+ "loss": 0.1764,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 3.34,
883
+ "learning_rate": 0.00015386226831913348,
884
+ "loss": 0.1703,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 3.36,
889
+ "learning_rate": 0.00015322598803549356,
890
+ "loss": 0.1731,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 3.38,
895
+ "learning_rate": 0.00015258668676167546,
896
+ "loss": 0.1741,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 3.41,
901
+ "learning_rate": 0.00015194440078301536,
902
+ "loss": 0.1703,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 3.43,
907
+ "learning_rate": 0.00015129916655425468,
908
+ "loss": 0.167,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 3.45,
913
+ "learning_rate": 0.00015065102069747118,
914
+ "loss": 0.1876,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 3.47,
919
+ "learning_rate": 0.00015000000000000001,
920
+ "loss": 0.1761,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 3.5,
925
+ "learning_rate": 0.00014934614141234618,
926
+ "loss": 0.1592,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 3.52,
931
+ "learning_rate": 0.000148689482046087,
932
+ "loss": 0.1581,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 3.54,
937
+ "learning_rate": 0.00014803005917176585,
938
+ "loss": 0.1804,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 3.57,
943
+ "learning_rate": 0.00014736791021677676,
944
+ "loss": 0.1699,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 3.59,
949
+ "learning_rate": 0.0001467030727632401,
950
+ "loss": 0.2209,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 3.61,
955
+ "learning_rate": 0.0001460355845458695,
956
+ "loss": 0.177,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 3.63,
961
+ "learning_rate": 0.00014536548344983016,
962
+ "loss": 0.1828,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 3.66,
967
+ "learning_rate": 0.00014469280750858854,
968
+ "loss": 0.1725,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 3.68,
973
+ "learning_rate": 0.00014401759490175362,
974
+ "loss": 0.1645,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 3.7,
979
+ "learning_rate": 0.00014333988395290992,
980
+ "loss": 0.1754,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 3.73,
985
+ "learning_rate": 0.00014265971312744252,
986
+ "loss": 0.1867,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 3.75,
991
+ "learning_rate": 0.00014197712103035346,
992
+ "loss": 0.1735,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 3.77,
997
+ "learning_rate": 0.00014129214640407102,
998
+ "loss": 0.1767,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 3.79,
1003
+ "learning_rate": 0.00014060482812625055,
1004
+ "loss": 0.1657,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 3.82,
1009
+ "learning_rate": 0.0001399152052075679,
1010
+ "loss": 0.1734,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 3.84,
1015
+ "learning_rate": 0.00013922331678950525,
1016
+ "loss": 0.1821,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 3.86,
1021
+ "learning_rate": 0.00013852920214212964,
1022
+ "loss": 0.1839,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 3.89,
1027
+ "learning_rate": 0.00013783290066186391,
1028
+ "loss": 0.1958,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 3.91,
1033
+ "learning_rate": 0.00013713445186925075,
1034
+ "loss": 0.1815,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 3.93,
1039
+ "learning_rate": 0.00013643389540670962,
1040
+ "loss": 0.1716,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 3.95,
1045
+ "learning_rate": 0.00013573127103628667,
1046
+ "loss": 0.1688,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 3.98,
1051
+ "learning_rate": 0.00013502661863739793,
1052
+ "loss": 0.1664,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 4.0,
1057
+ "learning_rate": 0.00013431997820456592,
1058
+ "loss": 0.1638,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 4.02,
1063
+ "learning_rate": 0.0001336113898451496,
1064
+ "loss": 0.2074,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 4.05,
1069
+ "learning_rate": 0.0001329008937770679,
1070
+ "loss": 0.1675,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 4.07,
1075
+ "learning_rate": 0.0001321885303265172,
1076
+ "loss": 0.1556,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 4.09,
1081
+ "learning_rate": 0.00013147433992568227,
1082
+ "loss": 0.1653,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 4.11,
1087
+ "learning_rate": 0.00013075836311044175,
1088
+ "loss": 0.1603,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 4.14,
1093
+ "learning_rate": 0.0001300406405180671,
1094
+ "loss": 0.1758,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 4.16,
1099
+ "learning_rate": 0.0001293212128849163,
1100
+ "loss": 0.1949,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 4.18,
1105
+ "learning_rate": 0.00012860012104412165,
1106
+ "loss": 0.17,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 4.21,
1111
+ "learning_rate": 0.0001278774059232723,
1112
+ "loss": 0.1662,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 4.23,
1117
+ "learning_rate": 0.00012715310854209124,
1118
+ "loss": 0.1571,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 4.25,
1123
+ "learning_rate": 0.00012642727001010694,
1124
+ "loss": 0.1979,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 4.27,
1129
+ "learning_rate": 0.00012569993152432028,
1130
+ "loss": 0.1666,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 4.3,
1135
+ "learning_rate": 0.00012497113436686627,
1136
+ "loss": 0.1065,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 4.32,
1141
+ "learning_rate": 0.00012424091990267087,
1142
+ "loss": 0.1146,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 4.34,
1147
+ "learning_rate": 0.0001235093295771032,
1148
+ "loss": 0.1749,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 4.37,
1153
+ "learning_rate": 0.00012277640491362341,
1154
+ "loss": 0.1256,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 4.39,
1159
+ "learning_rate": 0.0001220421875114256,
1160
+ "loss": 0.1835,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 4.41,
1165
+ "learning_rate": 0.0001213067190430769,
1166
+ "loss": 0.1628,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 4.43,
1171
+ "learning_rate": 0.00012057004125215223,
1172
+ "loss": 0.256,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 4.46,
1177
+ "learning_rate": 0.00011983219595086506,
1178
+ "loss": 0.146,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 4.48,
1183
+ "learning_rate": 0.00011909322501769406,
1184
+ "loss": 0.1682,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 4.5,
1189
+ "learning_rate": 0.0001183531703950064,
1190
+ "loss": 0.1794,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 4.53,
1195
+ "learning_rate": 0.00011761207408667703,
1196
+ "loss": 0.1905,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 4.55,
1201
+ "learning_rate": 0.00011686997815570473,
1202
+ "loss": 0.1749,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 4.57,
1207
+ "learning_rate": 0.00011612692472182463,
1208
+ "loss": 0.1775,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 4.59,
1213
+ "learning_rate": 0.00011538295595911764,
1214
+ "loss": 0.1672,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 4.62,
1219
+ "learning_rate": 0.00011463811409361667,
1220
+ "loss": 0.2042,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 4.64,
1225
+ "learning_rate": 0.00011389244140091013,
1226
+ "loss": 0.1714,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 4.66,
1231
+ "learning_rate": 0.00011314598020374231,
1232
+ "loss": 0.1637,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 4.69,
1237
+ "learning_rate": 0.00011239877286961122,
1238
+ "loss": 0.1786,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 4.71,
1243
+ "learning_rate": 0.00011165086180836406,
1244
+ "loss": 0.175,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 4.73,
1249
+ "learning_rate": 0.00011090228946979,
1250
+ "loss": 0.1763,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 4.75,
1255
+ "learning_rate": 0.00011015309834121081,
1256
+ "loss": 0.1941,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 4.78,
1261
+ "learning_rate": 0.00010940333094506952,
1262
+ "loss": 0.1452,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 4.8,
1267
+ "learning_rate": 0.00010865302983651673,
1268
+ "loss": 0.1719,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 4.82,
1273
+ "learning_rate": 0.00010790223760099549,
1274
+ "loss": 0.1697,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 4.85,
1279
+ "learning_rate": 0.00010715099685182408,
1280
+ "loss": 0.1644,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 4.87,
1285
+ "learning_rate": 0.00010639935022777741,
1286
+ "loss": 0.1683,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 4.89,
1291
+ "learning_rate": 0.00010564734039066699,
1292
+ "loss": 0.1746,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 4.91,
1297
+ "learning_rate": 0.00010489501002291952,
1298
+ "loss": 0.1606,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 4.94,
1303
+ "learning_rate": 0.00010414240182515429,
1304
+ "loss": 0.1841,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 4.96,
1309
+ "learning_rate": 0.00010338955851375962,
1310
+ "loss": 0.1833,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 4.98,
1315
+ "learning_rate": 0.00010263652281846837,
1316
+ "loss": 0.1802,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 5.01,
1321
+ "learning_rate": 0.00010188333747993264,
1322
+ "loss": 0.1675,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 5.03,
1327
+ "learning_rate": 0.00010113004524729799,
1328
+ "loss": 0.1598,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 5.05,
1333
+ "learning_rate": 0.00010037668887577709,
1334
+ "loss": 0.1612,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 5.07,
1339
+ "learning_rate": 9.962331112422293e-05,
1340
+ "loss": 0.1812,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 5.1,
1345
+ "learning_rate": 9.886995475270205e-05,
1346
+ "loss": 0.1853,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 5.12,
1351
+ "learning_rate": 9.811666252006742e-05,
1352
+ "loss": 0.1369,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 5.14,
1357
+ "learning_rate": 9.73634771815317e-05,
1358
+ "loss": 0.1563,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 5.17,
1363
+ "learning_rate": 9.661044148624037e-05,
1364
+ "loss": 0.1466,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 5.19,
1369
+ "learning_rate": 9.58575981748457e-05,
1370
+ "loss": 0.1343,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 5.21,
1375
+ "learning_rate": 9.510498997708049e-05,
1376
+ "loss": 0.1231,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 5.23,
1381
+ "learning_rate": 9.435265960933302e-05,
1382
+ "loss": 0.1472,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 5.26,
1387
+ "learning_rate": 9.360064977222262e-05,
1388
+ "loss": 0.1681,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 5.28,
1393
+ "learning_rate": 9.284900314817597e-05,
1394
+ "loss": 0.2364,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 5.3,
1399
+ "learning_rate": 9.209776239900453e-05,
1400
+ "loss": 0.1228,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 5.33,
1405
+ "learning_rate": 9.134697016348327e-05,
1406
+ "loss": 0.1417,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 5.35,
1411
+ "learning_rate": 9.05966690549305e-05,
1412
+ "loss": 0.1512,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 5.37,
1417
+ "learning_rate": 8.984690165878921e-05,
1418
+ "loss": 0.1248,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 5.39,
1423
+ "learning_rate": 8.909771053021002e-05,
1424
+ "loss": 0.1252,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 5.42,
1429
+ "learning_rate": 8.834913819163595e-05,
1430
+ "loss": 0.1341,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 5.44,
1435
+ "learning_rate": 8.760122713038881e-05,
1436
+ "loss": 0.1644,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 5.46,
1441
+ "learning_rate": 8.685401979625774e-05,
1442
+ "loss": 0.0977,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 5.49,
1447
+ "learning_rate": 8.610755859908991e-05,
1448
+ "loss": 0.1699,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 5.51,
1453
+ "learning_rate": 8.536188590638334e-05,
1454
+ "loss": 0.1196,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 5.53,
1459
+ "learning_rate": 8.46170440408824e-05,
1460
+ "loss": 0.0777,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 5.55,
1465
+ "learning_rate": 8.387307527817539e-05,
1466
+ "loss": 0.1266,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 5.58,
1471
+ "learning_rate": 8.313002184429529e-05,
1472
+ "loss": 0.1463,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 5.6,
1477
+ "learning_rate": 8.238792591332299e-05,
1478
+ "loss": 0.1037,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 5.62,
1483
+ "learning_rate": 8.164682960499361e-05,
1484
+ "loss": 0.1385,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 5.65,
1489
+ "learning_rate": 8.090677498230596e-05,
1490
+ "loss": 0.0932,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 5.67,
1495
+ "learning_rate": 8.016780404913496e-05,
1496
+ "loss": 0.1294,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 5.69,
1501
+ "learning_rate": 7.942995874784776e-05,
1502
+ "loss": 0.191,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 5.71,
1507
+ "learning_rate": 7.869328095692312e-05,
1508
+ "loss": 0.1488,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 5.74,
1513
+ "learning_rate": 7.795781248857443e-05,
1514
+ "loss": 0.1259,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 5.76,
1519
+ "learning_rate": 7.72235950863766e-05,
1520
+ "loss": 0.1266,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 5.78,
1525
+ "learning_rate": 7.64906704228968e-05,
1526
+ "loss": 0.1172,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 5.81,
1531
+ "learning_rate": 7.575908009732918e-05,
1532
+ "loss": 0.1032,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 5.83,
1537
+ "learning_rate": 7.502886563313376e-05,
1538
+ "loss": 0.0891,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 5.85,
1543
+ "learning_rate": 7.430006847567972e-05,
1544
+ "loss": 0.0909,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 5.87,
1549
+ "learning_rate": 7.357272998989308e-05,
1550
+ "loss": 0.1367,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 5.9,
1555
+ "learning_rate": 7.284689145790878e-05,
1556
+ "loss": 0.0965,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 5.92,
1561
+ "learning_rate": 7.21225940767277e-05,
1562
+ "loss": 0.1868,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 5.94,
1567
+ "learning_rate": 7.139987895587836e-05,
1568
+ "loss": 0.3087,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 5.97,
1573
+ "learning_rate": 7.067878711508375e-05,
1574
+ "loss": 0.1388,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 5.99,
1579
+ "learning_rate": 6.995935948193294e-05,
1580
+ "loss": 0.142,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 6.01,
1585
+ "learning_rate": 6.924163688955825e-05,
1586
+ "loss": 0.1212,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 6.03,
1591
+ "learning_rate": 6.852566007431773e-05,
1592
+ "loss": 0.1369,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 6.06,
1597
+ "learning_rate": 6.781146967348284e-05,
1598
+ "loss": 0.0927,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 6.08,
1603
+ "learning_rate": 6.709910622293212e-05,
1604
+ "loss": 0.1146,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 6.1,
1609
+ "learning_rate": 6.638861015485043e-05,
1610
+ "loss": 0.1059,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 6.13,
1615
+ "learning_rate": 6.568002179543409e-05,
1616
+ "loss": 0.1108,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 6.15,
1621
+ "learning_rate": 6.497338136260209e-05,
1622
+ "loss": 0.1333,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 6.17,
1627
+ "learning_rate": 6.426872896371331e-05,
1628
+ "loss": 0.115,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 6.19,
1633
+ "learning_rate": 6.356610459329038e-05,
1634
+ "loss": 0.0776,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 6.22,
1639
+ "learning_rate": 6.286554813074925e-05,
1640
+ "loss": 0.1038,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 6.24,
1645
+ "learning_rate": 6.21670993381361e-05,
1646
+ "loss": 0.0796,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 6.26,
1651
+ "learning_rate": 6.147079785787038e-05,
1652
+ "loss": 0.0982,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 6.29,
1657
+ "learning_rate": 6.0776683210494766e-05,
1658
+ "loss": 0.114,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 6.31,
1663
+ "learning_rate": 6.0084794792432155e-05,
1664
+ "loss": 0.0922,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 6.33,
1669
+ "learning_rate": 5.93951718737495e-05,
1670
+ "loss": 0.0725,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 6.35,
1675
+ "learning_rate": 5.8707853595928985e-05,
1676
+ "loss": 0.0855,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 6.38,
1681
+ "learning_rate": 5.802287896964658e-05,
1682
+ "loss": 0.1254,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 6.4,
1687
+ "learning_rate": 5.734028687255751e-05,
1688
+ "loss": 0.1193,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 6.42,
1693
+ "learning_rate": 5.666011604709005e-05,
1694
+ "loss": 0.1212,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 6.45,
1699
+ "learning_rate": 5.598240509824642e-05,
1700
+ "loss": 0.1744,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 6.47,
1705
+ "learning_rate": 5.530719249141147e-05,
1706
+ "loss": 0.062,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 6.49,
1711
+ "learning_rate": 5.463451655016988e-05,
1712
+ "loss": 0.1408,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 6.51,
1717
+ "learning_rate": 5.39644154541305e-05,
1718
+ "loss": 0.0819,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 6.54,
1723
+ "learning_rate": 5.329692723675994e-05,
1724
+ "loss": 0.118,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 6.56,
1729
+ "learning_rate": 5.263208978322326e-05,
1730
+ "loss": 0.0602,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 6.58,
1735
+ "learning_rate": 5.1969940828234184e-05,
1736
+ "loss": 0.0708,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 6.61,
1741
+ "learning_rate": 5.131051795391302e-05,
1742
+ "loss": 0.107,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 6.63,
1747
+ "learning_rate": 5.065385858765383e-05,
1748
+ "loss": 0.0621,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 6.65,
1753
+ "learning_rate": 5.000000000000002e-05,
1754
+ "loss": 0.0428,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 6.67,
1759
+ "learning_rate": 4.934897930252886e-05,
1760
+ "loss": 0.111,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 6.7,
1765
+ "learning_rate": 4.870083344574531e-05,
1766
+ "loss": 0.1184,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 6.72,
1771
+ "learning_rate": 4.805559921698464e-05,
1772
+ "loss": 0.0919,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 6.74,
1777
+ "learning_rate": 4.7413313238324556e-05,
1778
+ "loss": 0.0477,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 6.77,
1783
+ "learning_rate": 4.6774011964506435e-05,
1784
+ "loss": 0.0738,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 6.79,
1789
+ "learning_rate": 4.613773168086657e-05,
1790
+ "loss": 0.101,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 6.81,
1795
+ "learning_rate": 4.550450850127625e-05,
1796
+ "loss": 0.0585,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 6.83,
1801
+ "learning_rate": 4.4874378366092476e-05,
1802
+ "loss": 0.0443,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 6.86,
1807
+ "learning_rate": 4.42473770401176e-05,
1808
+ "loss": 0.1272,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 6.88,
1813
+ "learning_rate": 4.3623540110569935e-05,
1814
+ "loss": 0.1569,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 6.9,
1819
+ "learning_rate": 4.300290298506333e-05,
1820
+ "loss": 0.0314,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 6.93,
1825
+ "learning_rate": 4.238550088959796e-05,
1826
+ "loss": 0.1179,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 6.95,
1831
+ "learning_rate": 4.1771368866560665e-05,
1832
+ "loss": 0.1037,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 6.97,
1837
+ "learning_rate": 4.116054177273627e-05,
1838
+ "loss": 0.0898,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 6.99,
1843
+ "learning_rate": 4.0553054277329074e-05,
1844
+ "loss": 0.1015,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 7.02,
1849
+ "learning_rate": 3.9948940859994966e-05,
1850
+ "loss": 0.0652,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 7.04,
1855
+ "learning_rate": 3.9348235808884724e-05,
1856
+ "loss": 0.0403,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 7.06,
1861
+ "learning_rate": 3.875097321869768e-05,
1862
+ "loss": 0.0501,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 7.09,
1867
+ "learning_rate": 3.815718698874672e-05,
1868
+ "loss": 0.0874,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 7.11,
1873
+ "learning_rate": 3.7566910821034005e-05,
1874
+ "loss": 0.0336,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 7.13,
1879
+ "learning_rate": 3.698017821833844e-05,
1880
+ "loss": 0.0606,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 7.15,
1885
+ "learning_rate": 3.6397022482313805e-05,
1886
+ "loss": 0.0154,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 7.18,
1891
+ "learning_rate": 3.5817476711598906e-05,
1892
+ "loss": 0.0232,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 7.2,
1897
+ "learning_rate": 3.524157379993882e-05,
1898
+ "loss": 0.0202,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 7.22,
1903
+ "learning_rate": 3.466934643431795e-05,
1904
+ "loss": 0.0991,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 7.25,
1909
+ "learning_rate": 3.4100827093104694e-05,
1910
+ "loss": 0.1159,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 7.27,
1915
+ "learning_rate": 3.353604804420821e-05,
1916
+ "loss": 0.012,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 7.29,
1921
+ "learning_rate": 3.2975041343246936e-05,
1922
+ "loss": 0.0735,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 7.31,
1927
+ "learning_rate": 3.241783883172895e-05,
1928
+ "loss": 0.0097,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 7.34,
1933
+ "learning_rate": 3.186447213524508e-05,
1934
+ "loss": 0.03,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 7.36,
1939
+ "learning_rate": 3.131497266167357e-05,
1940
+ "loss": 0.0764,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 7.38,
1945
+ "learning_rate": 3.076937159939768e-05,
1946
+ "loss": 0.0166,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 7.41,
1951
+ "learning_rate": 3.0227699915535367e-05,
1952
+ "loss": 0.1195,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 7.43,
1957
+ "learning_rate": 2.968998835418174e-05,
1958
+ "loss": 0.117,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 7.45,
1963
+ "learning_rate": 2.9156267434663963e-05,
1964
+ "loss": 0.0241,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 7.47,
1969
+ "learning_rate": 2.862656744980926e-05,
1970
+ "loss": 0.0874,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 7.5,
1975
+ "learning_rate": 2.81009184642253e-05,
1976
+ "loss": 0.062,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 7.52,
1981
+ "learning_rate": 2.757935031259402e-05,
1982
+ "loss": 0.0262,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 7.54,
1987
+ "learning_rate": 2.7061892597978177e-05,
1988
+ "loss": 0.1282,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 7.57,
1993
+ "learning_rate": 2.6548574690141125e-05,
1994
+ "loss": 0.0045,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 7.59,
1999
+ "learning_rate": 2.603942572387993e-05,
2000
+ "loss": 0.0423,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 7.61,
2005
+ "learning_rate": 2.553447459737157e-05,
2006
+ "loss": 0.0448,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 7.63,
2011
+ "learning_rate": 2.5033749970533015e-05,
2012
+ "loss": 0.0534,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 7.66,
2017
+ "learning_rate": 2.4537280263394258e-05,
2018
+ "loss": 0.04,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 7.68,
2023
+ "learning_rate": 2.4045093654485518e-05,
2024
+ "loss": 0.0356,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 7.7,
2029
+ "learning_rate": 2.355721807923761e-05,
2030
+ "loss": 0.0786,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 7.73,
2035
+ "learning_rate": 2.307368122839675e-05,
2036
+ "loss": 0.0441,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 7.75,
2041
+ "learning_rate": 2.2594510546452507e-05,
2042
+ "loss": 0.0155,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 7.77,
2047
+ "learning_rate": 2.2119733230080408e-05,
2048
+ "loss": 0.0217,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 7.79,
2053
+ "learning_rate": 2.1649376226598106e-05,
2054
+ "loss": 0.0472,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 7.82,
2059
+ "learning_rate": 2.1183466232436088e-05,
2060
+ "loss": 0.0354,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 7.84,
2065
+ "learning_rate": 2.0722029691622336e-05,
2066
+ "loss": 0.0702,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 7.86,
2071
+ "learning_rate": 2.026509279428137e-05,
2072
+ "loss": 0.0759,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 7.89,
2077
+ "learning_rate": 1.9812681475147942e-05,
2078
+ "loss": 0.1333,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 7.91,
2083
+ "learning_rate": 1.9364821412094857e-05,
2084
+ "loss": 0.0323,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 7.93,
2089
+ "learning_rate": 1.8921538024675678e-05,
2090
+ "loss": 0.0105,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 7.95,
2095
+ "learning_rate": 1.848285647268181e-05,
2096
+ "loss": 0.0554,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 7.98,
2101
+ "learning_rate": 1.8048801654714688e-05,
2102
+ "loss": 0.045,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 8.0,
2107
+ "learning_rate": 1.761939820677241e-05,
2108
+ "loss": 0.0068,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 8.02,
2113
+ "learning_rate": 1.7194670500851616e-05,
2114
+ "loss": 0.024,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 8.05,
2119
+ "learning_rate": 1.6774642643563953e-05,
2120
+ "loss": 0.0245,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 8.07,
2125
+ "learning_rate": 1.6359338474768193e-05,
2126
+ "loss": 0.0177,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 8.09,
2131
+ "learning_rate": 1.594878156621672e-05,
2132
+ "loss": 0.0234,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 8.11,
2137
+ "learning_rate": 1.554299522021796e-05,
2138
+ "loss": 0.0174,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 8.14,
2143
+ "learning_rate": 1.5142002468313699e-05,
2144
+ "loss": 0.0074,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 8.16,
2149
+ "learning_rate": 1.4745826069971758e-05,
2150
+ "loss": 0.0468,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 8.18,
2155
+ "learning_rate": 1.4354488511294417e-05,
2156
+ "loss": 0.0051,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 8.21,
2161
+ "learning_rate": 1.3968012003741948e-05,
2162
+ "loss": 0.0042,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 8.23,
2167
+ "learning_rate": 1.35864184828721e-05,
2168
+ "loss": 0.0071,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 8.25,
2173
+ "learning_rate": 1.3209729607095023e-05,
2174
+ "loss": 0.0074,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 8.27,
2179
+ "learning_rate": 1.2837966756443975e-05,
2180
+ "loss": 0.0087,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 8.3,
2185
+ "learning_rate": 1.2471151031361794e-05,
2186
+ "loss": 0.0081,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 8.32,
2191
+ "learning_rate": 1.2109303251503434e-05,
2192
+ "loss": 0.0068,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 8.34,
2197
+ "learning_rate": 1.1752443954554082e-05,
2198
+ "loss": 0.0068,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 8.37,
2203
+ "learning_rate": 1.1400593395063686e-05,
2204
+ "loss": 0.01,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 8.39,
2209
+ "learning_rate": 1.1053771543297198e-05,
2210
+ "loss": 0.0078,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 8.41,
2215
+ "learning_rate": 1.0711998084101205e-05,
2216
+ "loss": 0.0106,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 8.43,
2221
+ "learning_rate": 1.0375292415786575e-05,
2222
+ "loss": 0.0035,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 8.46,
2227
+ "learning_rate": 1.0043673649027518e-05,
2228
+ "loss": 0.0715,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 8.48,
2233
+ "learning_rate": 9.717160605776932e-06,
2234
+ "loss": 0.0093,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 8.5,
2239
+ "learning_rate": 9.39577181819794e-06,
2240
+ "loss": 0.0815,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 8.53,
2245
+ "learning_rate": 9.07952552761232e-06,
2246
+ "loss": 0.0086,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 8.55,
2251
+ "learning_rate": 8.768439683464868e-06,
2252
+ "loss": 0.0138,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 8.57,
2257
+ "learning_rate": 8.462531942304896e-06,
2258
+ "loss": 0.0132,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 8.59,
2263
+ "learning_rate": 8.161819666783888e-06,
2264
+ "loss": 0.0141,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 8.62,
2269
+ "learning_rate": 7.866319924670163e-06,
2270
+ "loss": 0.0477,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 8.64,
2275
+ "learning_rate": 7.576049487880033e-06,
2276
+ "loss": 0.0103,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 8.66,
2281
+ "learning_rate": 7.291024831525961e-06,
2282
+ "loss": 0.0044,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 8.69,
2287
+ "learning_rate": 7.011262132981456e-06,
2288
+ "loss": 0.051,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 8.71,
2293
+ "learning_rate": 6.7367772709627905e-06,
2294
+ "loss": 0.0031,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 8.73,
2299
+ "learning_rate": 6.467585824627887e-06,
2300
+ "loss": 0.016,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 8.75,
2305
+ "learning_rate": 6.203703072692013e-06,
2306
+ "loss": 0.0054,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 8.78,
2311
+ "learning_rate": 5.945143992560587e-06,
2312
+ "loss": 0.0042,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 8.8,
2317
+ "learning_rate": 5.691923259479093e-06,
2318
+ "loss": 0.0133,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 8.82,
2323
+ "learning_rate": 5.444055245700208e-06,
2324
+ "loss": 0.026,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 8.85,
2329
+ "learning_rate": 5.201554019667965e-06,
2330
+ "loss": 0.0347,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 8.87,
2335
+ "learning_rate": 4.964433345219355e-06,
2336
+ "loss": 0.0498,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 8.89,
2341
+ "learning_rate": 4.732706680803045e-06,
2342
+ "loss": 0.0218,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 8.91,
2347
+ "learning_rate": 4.506387178715565e-06,
2348
+ "loss": 0.0094,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 8.94,
2353
+ "learning_rate": 4.285487684354772e-06,
2354
+ "loss": 0.0798,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 8.96,
2359
+ "learning_rate": 4.070020735490809e-06,
2360
+ "loss": 0.0036,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 8.98,
2365
+ "learning_rate": 3.859998561554434e-06,
2366
+ "loss": 0.0086,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 9.01,
2371
+ "learning_rate": 3.655433082942972e-06,
2372
+ "loss": 0.0673,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 9.03,
2377
+ "learning_rate": 3.4563359103436886e-06,
2378
+ "loss": 0.0103,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 9.05,
2383
+ "learning_rate": 3.262718344074811e-06,
2384
+ "loss": 0.0038,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 9.07,
2389
+ "learning_rate": 3.0745913734441355e-06,
2390
+ "loss": 0.0127,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 9.1,
2395
+ "learning_rate": 2.891965676125352e-06,
2396
+ "loss": 0.0093,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 9.12,
2401
+ "learning_rate": 2.7148516175519277e-06,
2402
+ "loss": 0.0137,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 9.14,
2407
+ "learning_rate": 2.5432592503288e-06,
2408
+ "loss": 0.0027,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 9.17,
2413
+ "learning_rate": 2.377198313661877e-06,
2414
+ "loss": 0.0102,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 9.19,
2419
+ "learning_rate": 2.2166782328051803e-06,
2420
+ "loss": 0.0051,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 9.21,
2425
+ "learning_rate": 2.0617081185259512e-06,
2426
+ "loss": 0.0027,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 9.23,
2431
+ "learning_rate": 1.912296766587507e-06,
2432
+ "loss": 0.0074,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 9.26,
2437
+ "learning_rate": 1.7684526572500416e-06,
2438
+ "loss": 0.0029,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 9.28,
2443
+ "learning_rate": 1.6301839547892328e-06,
2444
+ "loss": 0.0106,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 9.3,
2449
+ "learning_rate": 1.4974985070329683e-06,
2450
+ "loss": 0.0243,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 9.33,
2455
+ "learning_rate": 1.3704038449158573e-06,
2456
+ "loss": 0.0031,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 9.35,
2461
+ "learning_rate": 1.2489071820517396e-06,
2462
+ "loss": 0.0041,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 9.37,
2467
+ "learning_rate": 1.1330154143243787e-06,
2468
+ "loss": 0.0096,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 9.39,
2473
+ "learning_rate": 1.0227351194959545e-06,
2474
+ "loss": 0.0103,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 9.42,
2479
+ "learning_rate": 9.180725568338044e-07,
2480
+ "loss": 0.0069,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 9.44,
2485
+ "learning_rate": 8.190336667550868e-07,
2486
+ "loss": 0.0048,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 9.46,
2491
+ "learning_rate": 7.256240704897166e-07,
2492
+ "loss": 0.0057,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 9.49,
2497
+ "learning_rate": 6.378490697611761e-07,
2498
+ "loss": 0.003,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 9.51,
2503
+ "learning_rate": 5.55713646485756e-07,
2504
+ "loss": 0.0067,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 9.53,
2509
+ "learning_rate": 4.79222462489648e-07,
2510
+ "loss": 0.0036,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 9.55,
2515
+ "learning_rate": 4.0837985924448984e-07,
2516
+ "loss": 0.0055,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 9.58,
2521
+ "learning_rate": 3.431898576208292e-07,
2522
+ "loss": 0.0027,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 9.6,
2527
+ "learning_rate": 2.836561576599839e-07,
2528
+ "loss": 0.0069,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 9.62,
2533
+ "learning_rate": 2.2978213836400975e-07,
2534
+ "loss": 0.0185,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 9.65,
2539
+ "learning_rate": 1.815708575038988e-07,
2540
+ "loss": 0.0238,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 9.67,
2545
+ "learning_rate": 1.3902505144608446e-07,
2546
+ "loss": 0.012,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 9.69,
2551
+ "learning_rate": 1.0214713499706597e-07,
2552
+ "loss": 0.003,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 9.71,
2557
+ "learning_rate": 7.093920126638454e-08,
2558
+ "loss": 0.0022,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 9.74,
2563
+ "learning_rate": 4.54030215478074e-08,
2564
+ "loss": 0.0037,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 9.76,
2569
+ "learning_rate": 2.5540045218819253e-08,
2570
+ "loss": 0.0024,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 9.78,
2575
+ "learning_rate": 1.1351399658321438e-08,
2576
+ "loss": 0.0027,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 9.81,
2581
+ "learning_rate": 2.8378901826831005e-09,
2582
+ "loss": 0.0033,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 9.83,
2587
+ "learning_rate": 0.0,
2588
+ "loss": 0.0051,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 9.83,
2593
+ "step": 430,
2594
+ "total_flos": 2.686707530150707e+16,
2595
+ "train_loss": 0.1627144819580365,
2596
+ "train_runtime": 335.6804,
2597
+ "train_samples_per_second": 20.794,
2598
+ "train_steps_per_second": 1.281
2599
+ }
2600
+ ],
2601
+ "logging_steps": 1.0,
2602
+ "max_steps": 430,
2603
+ "num_input_tokens_seen": 0,
2604
+ "num_train_epochs": 10,
2605
+ "save_steps": 50000,
2606
+ "total_flos": 2.686707530150707e+16,
2607
+ "train_batch_size": 4,
2608
+ "trial_name": null,
2609
+ "trial_params": null
2610
+ }