File size: 2,058 Bytes
d1012a5 7426924 d1012a5 7426924 d1012a5 7426924 d1012a5 7426924 d1012a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-es-en
tags:
- generated_from_trainer
datasets:
- opus_books
metrics:
- bleu
model-index:
- name: opus-mt-es-en-finetuned_model-en-to-es
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: opus_books
type: opus_books
config: en-es
split: train
args: en-es
metrics:
- name: Bleu
type: bleu
value: 13.8765
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-es-en-finetuned_model-en-to-es
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-en](https://huggingface.co/Helsinki-NLP/opus-mt-es-en) on the opus_books dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9803
- Bleu: 13.8765
- Gen Len: 45.316
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 2.5745 | 1.0 | 4674 | 2.3717 | 10.1245 | 46.0135 |
| 2.2901 | 2.0 | 9348 | 2.1461 | 12.2345 | 45.3126 |
| 2.1356 | 3.0 | 14022 | 2.0491 | 13.1754 | 45.496 |
| 2.0507 | 4.0 | 18696 | 1.9967 | 13.689 | 45.3156 |
| 2.0222 | 5.0 | 23370 | 1.9803 | 13.8765 | 45.316 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|