File size: 5,808 Bytes
27d0c57
 
 
 
 
 
 
61544c1
93e2b8a
1d35474
61544c1
 
 
27d0c57
0f1c417
27d0c57
47dec86
 
61544c1
 
df8193a
3d2e880
488ebf7
 
3d2e880
 
61544c1
 
 
 
 
 
 
3d2e880
 
df8193a
488ebf7
 
 
df8193a
61544c1
 
 
 
 
 
27d0c57
 
 
 
 
bc91ec9
27d0c57
 
 
24f2219
27d0c57
24f2219
27d0c57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8a62ab
27d0c57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1830e0f
ba22605
 
 
dea9081
 
 
 
 
ba22605
dea9081
 
 
 
 
974dfd3
1830e0f
488c40e
 
 
 
 
 
 
974dfd3
488c40e
974dfd3
 
 
488c40e
 
 
 
 
 
 
 
 
 
974dfd3
434e938
488c40e
 
79f3110
6ab3aac
79f3110
 
24f2219
dea9081
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
language:
- sv-SE
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- hello
- model_for_talk
- mozilla-foundation/common_voice_7_0
- robust-speech-event
- sv
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-300M - Swedish
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 7
      type: mozilla-foundation/common_voice_7_0
      args: sv-SE
    metrics:
    - name: Test WER
      type: wer
      value: 16.98
    - name: Test CER
      type: cer
      value: 5.66
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: sv
    metrics:
    - name: Test WER
      type: wer
      value: 27.01
    - name: Test CER
      type: cer
      value: 13.14
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# XLS-R-300m-SV

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset.
It achieves the following results on the evaluation set:

- Loss: 0.3171
- Wer: 0.2468

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.3349        | 1.45  | 500   | 3.2858          | 1.0    |
| 2.9298        | 2.91  | 1000  | 2.9225          | 1.0000 |
| 2.0839        | 4.36  | 1500  | 1.1546          | 0.8295 |
| 1.7093        | 5.81  | 2000  | 0.6827          | 0.5701 |
| 1.5855        | 7.27  | 2500  | 0.5597          | 0.4947 |
| 1.4831        | 8.72  | 3000  | 0.4923          | 0.4527 |
| 1.4416        | 10.17 | 3500  | 0.4670          | 0.4270 |
| 1.3848        | 11.63 | 4000  | 0.4341          | 0.3980 |
| 1.3749        | 13.08 | 4500  | 0.4203          | 0.4011 |
| 1.3311        | 14.53 | 5000  | 0.4310          | 0.3961 |
| 1.317         | 15.99 | 5500  | 0.3898          | 0.4322 |
| 1.2799        | 17.44 | 6000  | 0.3806          | 0.3572 |
| 1.2771        | 18.89 | 6500  | 0.3828          | 0.3427 |
| 1.2451        | 20.35 | 7000  | 0.3702          | 0.3359 |
| 1.2182        | 21.8  | 7500  | 0.3685          | 0.3270 |
| 1.2152        | 23.26 | 8000  | 0.3650          | 0.3308 |
| 1.1837        | 24.71 | 8500  | 0.3568          | 0.3187 |
| 1.1721        | 26.16 | 9000  | 0.3659          | 0.3249 |
| 1.1764        | 27.61 | 9500  | 0.3547          | 0.3145 |
| 1.1606        | 29.07 | 10000 | 0.3514          | 0.3104 |
| 1.1431        | 30.52 | 10500 | 0.3469          | 0.3062 |
| 1.1047        | 31.97 | 11000 | 0.3313          | 0.2979 |
| 1.1315        | 33.43 | 11500 | 0.3298          | 0.2992 |
| 1.1022        | 34.88 | 12000 | 0.3296          | 0.2973 |
| 1.0935        | 36.34 | 12500 | 0.3278          | 0.2926 |
| 1.0676        | 37.79 | 13000 | 0.3208          | 0.2868 |
| 1.0571        | 39.24 | 13500 | 0.3322          | 0.2885 |
| 1.0536        | 40.7  | 14000 | 0.3245          | 0.2831 |
| 1.0525        | 42.15 | 14500 | 0.3285          | 0.2826 |
| 1.0464        | 43.6  | 15000 | 0.3223          | 0.2796 |
| 1.0415        | 45.06 | 15500 | 0.3166          | 0.2774 |
| 1.0356        | 46.51 | 16000 | 0.3177          | 0.2746 |
| 1.04          | 47.96 | 16500 | 0.3150          | 0.2735 |
| 1.0209        | 49.42 | 17000 | 0.3175          | 0.2731 |


### Framework versions

- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.10.3

#### Evaluation Commands

1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test`

```bash
python eval.py --model_id hf-test/xls-r-300m-sv --dataset mozilla-foundation/common_voice_7_0 --config sv-SE --split test
```

2. To evaluate on `speech-recognition-community-v2/dev_data`

```bash
python eval.py --model_id hf-test/xls-r-300m-sv --dataset speech-recognition-community-v2/dev_data --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```

### Inference With LM

```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F


model_id = "hf-test/xls-r-300m-sv"

sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "sv-SE", split="test", streaming=True, use_auth_token=True))

sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()

model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)

input_values = processor(resampled_audio, return_tensors="pt").input_values

with torch.no_grad():
    logits = model(input_values).logits

transcription = processor.batch_decode(logits.numpy()).text
# => "jag lämnade grovjobbet åt honom"
```

### Eval results on Common Voice 7 "test" (WER):

| Without LM | With LM (run `./eval.py`) |
|---|---|
| 24.68 | 16.98 |