End of training
Browse files- README.md +100 -0
- adapter.ara.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
base_model: facebook/mms-1b-all
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: mms-SADA
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# mms-SADA
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.1720
|
21 |
+
- Wer: 0.6627
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 1e-05
|
41 |
+
- train_batch_size: 14
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: constant_with_warmup
|
46 |
+
- lr_scheduler_warmup_steps: 50
|
47 |
+
- training_steps: 10000
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
53 |
+
| 1.7672 | 0.0 | 250 | 1.3082 | 0.6868 |
|
54 |
+
| 1.7864 | 0.01 | 500 | 1.3002 | 0.6852 |
|
55 |
+
| 1.445 | 0.01 | 750 | 1.2947 | 0.6846 |
|
56 |
+
| 1.6083 | 0.01 | 1000 | 1.2921 | 0.6831 |
|
57 |
+
| 1.6405 | 0.02 | 1250 | 1.2864 | 0.6819 |
|
58 |
+
| 1.6112 | 0.02 | 1500 | 1.2774 | 0.6826 |
|
59 |
+
| 1.5307 | 0.02 | 1750 | 1.2730 | 0.6812 |
|
60 |
+
| 1.8135 | 0.02 | 2000 | 1.2694 | 0.6795 |
|
61 |
+
| 1.6133 | 0.03 | 2250 | 1.2660 | 0.6783 |
|
62 |
+
| 1.8358 | 0.03 | 2500 | 1.2633 | 0.6758 |
|
63 |
+
| 1.507 | 0.03 | 2750 | 1.2563 | 0.6774 |
|
64 |
+
| 1.7197 | 0.04 | 3000 | 1.2553 | 0.6750 |
|
65 |
+
| 1.5191 | 0.04 | 3250 | 1.2498 | 0.6737 |
|
66 |
+
| 1.4389 | 0.04 | 3500 | 1.2478 | 0.6734 |
|
67 |
+
| 1.6184 | 0.05 | 3750 | 1.2401 | 0.6723 |
|
68 |
+
| 1.6814 | 0.05 | 4000 | 1.2357 | 0.6716 |
|
69 |
+
| 1.4742 | 0.05 | 4250 | 1.2304 | 0.6708 |
|
70 |
+
| 1.4276 | 0.06 | 4500 | 1.2302 | 0.6700 |
|
71 |
+
| 1.4855 | 0.06 | 4750 | 1.2224 | 0.6693 |
|
72 |
+
| 1.4409 | 0.06 | 5000 | 1.2197 | 0.6693 |
|
73 |
+
| 1.4562 | 0.07 | 5250 | 1.2162 | 0.6688 |
|
74 |
+
| 1.5353 | 0.07 | 5500 | 1.2119 | 0.6689 |
|
75 |
+
| 1.5601 | 0.07 | 5750 | 1.2105 | 0.6696 |
|
76 |
+
| 1.4666 | 0.07 | 6000 | 1.2066 | 0.6679 |
|
77 |
+
| 1.6642 | 0.08 | 6250 | 1.2010 | 0.6687 |
|
78 |
+
| 1.5008 | 0.08 | 6500 | 1.2005 | 0.6669 |
|
79 |
+
| 1.6213 | 0.08 | 6750 | 1.2008 | 0.6665 |
|
80 |
+
| 1.7335 | 0.09 | 7000 | 1.1938 | 0.6675 |
|
81 |
+
| 1.421 | 0.09 | 7250 | 1.1921 | 0.6666 |
|
82 |
+
| 1.6255 | 0.09 | 7500 | 1.1919 | 0.6645 |
|
83 |
+
| 1.4785 | 0.1 | 7750 | 1.1895 | 0.6646 |
|
84 |
+
| 1.6736 | 0.1 | 8000 | 1.1918 | 0.6634 |
|
85 |
+
| 1.4629 | 0.1 | 8250 | 1.1841 | 0.6645 |
|
86 |
+
| 1.6599 | 0.11 | 8500 | 1.1832 | 0.6628 |
|
87 |
+
| 1.4726 | 0.11 | 8750 | 1.1790 | 0.6649 |
|
88 |
+
| 1.6825 | 0.11 | 9000 | 1.1774 | 0.6636 |
|
89 |
+
| 1.6216 | 0.11 | 9250 | 1.1815 | 0.6630 |
|
90 |
+
| 1.4291 | 0.12 | 9500 | 1.1768 | 0.6637 |
|
91 |
+
| 1.2947 | 0.12 | 9750 | 1.1743 | 0.6623 |
|
92 |
+
| 1.4702 | 0.12 | 10000 | 1.1720 | 0.6627 |
|
93 |
+
|
94 |
+
|
95 |
+
### Framework versions
|
96 |
+
|
97 |
+
- Transformers 4.33.2
|
98 |
+
- Pytorch 2.0.1
|
99 |
+
- Datasets 2.19.1
|
100 |
+
- Tokenizers 0.13.3
|
adapter.ara.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72f0c614a7f9b27977083650ed6891d74162c8b6fa614ca204e4a80238fa3942
|
3 |
+
size 8824152
|