--- license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer metrics: - wer model-index: - name: mms-MGB2 results: [] --- # mms-MGB2 This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 14 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.8035 | 0.01 | 250 | 5.9077 | 1.0036 | | 2.2196 | 0.02 | 500 | 2.0224 | 0.9764 | | 1.0641 | 0.03 | 750 | 0.8949 | 0.4840 | | 0.8089 | 0.04 | 1000 | 0.7188 | 0.4095 | | 1.7071 | 0.05 | 1250 | 0.7008 | 0.3974 | | 0.8132 | 0.06 | 1500 | 0.6975 | 0.3986 | | 0.9741 | 0.07 | 1750 | 0.6975 | 0.3986 | | 0.8332 | 0.08 | 2000 | 0.6975 | 0.3986 | | 0.8908 | 0.09 | 2250 | 0.6975 | 0.3986 | | 0.8321 | 0.1 | 2500 | 0.6975 | 0.3986 | | 0.7957 | 0.1 | 2750 | 0.6975 | 0.3986 | | 0.9173 | 0.11 | 3000 | 0.6975 | 0.3986 | | 2.0065 | 0.12 | 3250 | 0.6975 | 0.3986 | | 0.8618 | 0.13 | 3500 | 0.6975 | 0.3986 | | 0.9001 | 0.14 | 3750 | 0.6975 | 0.3986 | | 1.0321 | 0.15 | 4000 | 0.6975 | 0.3986 | | 0.8408 | 0.16 | 4250 | 0.6975 | 0.3986 | | 0.8901 | 0.17 | 4500 | 0.6975 | 0.3986 | | 0.8242 | 0.18 | 4750 | 0.6975 | 0.3986 | | 0.8678 | 0.19 | 5000 | 0.6975 | 0.3986 | | 0.8633 | 0.2 | 5250 | 0.6975 | 0.3986 | | 0.8087 | 0.21 | 5500 | 0.6975 | 0.3986 | | 0.9243 | 0.22 | 5750 | 0.6975 | 0.3986 | | 0.7973 | 0.23 | 6000 | 0.6975 | 0.3986 | | 0.835 | 0.24 | 6250 | 0.6975 | 0.3986 | | 1.3251 | 0.25 | 6500 | 0.6975 | 0.3986 | | 0.0 | 0.26 | 6750 | nan | 1.0 | | 0.0 | 0.27 | 7000 | nan | 1.0 | | 0.0 | 0.28 | 7250 | nan | 1.0 | | 0.0 | 0.29 | 7500 | nan | 1.0 | | 0.0 | 0.29 | 7750 | nan | 1.0 | | 0.0 | 0.3 | 8000 | nan | 1.0 | | 0.0 | 0.31 | 8250 | nan | 1.0 | | 0.0 | 0.32 | 8500 | nan | 1.0 | | 0.0 | 0.33 | 8750 | nan | 1.0 | | 0.0 | 0.34 | 9000 | nan | 1.0 | | 0.0 | 0.35 | 9250 | nan | 1.0 | | 0.0 | 0.36 | 9500 | nan | 1.0 | | 0.0 | 0.37 | 9750 | nan | 1.0 | | 0.0 | 0.38 | 10000 | nan | 1.0 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1 - Datasets 2.19.1 - Tokenizers 0.13.3