--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: german-bert-finetuned-ner results: [] --- # german-bert-finetuned-ner This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0907 - Precision: 0.8143 - Recall: 0.8180 - F1: 0.8161 - Accuracy: 0.9893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 120 | 0.0715 | 0.7092 | 0.8 | 0.7518 | 0.9881 | | No log | 2.0 | 240 | 0.0935 | 0.6588 | 0.8157 | 0.7289 | 0.9845 | | No log | 3.0 | 360 | 0.0664 | 0.7303 | 0.7910 | 0.7594 | 0.9885 | | No log | 4.0 | 480 | 0.0647 | 0.6691 | 0.8225 | 0.7379 | 0.9872 | | 0.0027 | 5.0 | 600 | 0.0752 | 0.8409 | 0.7955 | 0.8176 | 0.9900 | | 0.0027 | 6.0 | 720 | 0.0658 | 0.7105 | 0.8382 | 0.7691 | 0.9887 | | 0.0027 | 7.0 | 840 | 0.0818 | 0.8364 | 0.8045 | 0.8202 | 0.9896 | | 0.0027 | 8.0 | 960 | 0.0791 | 0.7660 | 0.8315 | 0.7974 | 0.9892 | | 0.0013 | 9.0 | 1080 | 0.0791 | 0.7730 | 0.8112 | 0.7917 | 0.9893 | | 0.0013 | 10.0 | 1200 | 0.0809 | 0.8117 | 0.8135 | 0.8126 | 0.9889 | | 0.0013 | 11.0 | 1320 | 0.0851 | 0.8085 | 0.8157 | 0.8121 | 0.9894 | | 0.0013 | 12.0 | 1440 | 0.0875 | 0.8361 | 0.8022 | 0.8188 | 0.9894 | | 0.0004 | 13.0 | 1560 | 0.0892 | 0.8395 | 0.8112 | 0.8251 | 0.9893 | | 0.0004 | 14.0 | 1680 | 0.0857 | 0.7978 | 0.8337 | 0.8154 | 0.9894 | | 0.0004 | 15.0 | 1800 | 0.0848 | 0.7931 | 0.8270 | 0.8097 | 0.9895 | | 0.0004 | 16.0 | 1920 | 0.0867 | 0.8053 | 0.8180 | 0.8116 | 0.9896 | | 0.0002 | 17.0 | 2040 | 0.0866 | 0.7842 | 0.8247 | 0.8039 | 0.9891 | | 0.0002 | 18.0 | 2160 | 0.0885 | 0.7952 | 0.8202 | 0.8075 | 0.9893 | | 0.0002 | 19.0 | 2280 | 0.0895 | 0.7948 | 0.8180 | 0.8062 | 0.9894 | | 0.0002 | 20.0 | 2400 | 0.0907 | 0.8143 | 0.8180 | 0.8161 | 0.9893 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1