Nguyen Dung commited on
Commit
2a670ed
1 Parent(s): 9a8ee0b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - precision
6
+ - recall
7
+ - f1
8
+ - accuracy
9
+ model-index:
10
+ - name: german-bert-finetuned-ner
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # german-bert-finetuned-ner
18
+
19
+ This model was trained from scratch on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.0907
22
+ - Precision: 0.8143
23
+ - Recall: 0.8180
24
+ - F1: 0.8161
25
+ - Accuracy: 0.9893
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 2e-05
45
+ - train_batch_size: 8
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 20
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
56
+ | No log | 1.0 | 120 | 0.0715 | 0.7092 | 0.8 | 0.7518 | 0.9881 |
57
+ | No log | 2.0 | 240 | 0.0935 | 0.6588 | 0.8157 | 0.7289 | 0.9845 |
58
+ | No log | 3.0 | 360 | 0.0664 | 0.7303 | 0.7910 | 0.7594 | 0.9885 |
59
+ | No log | 4.0 | 480 | 0.0647 | 0.6691 | 0.8225 | 0.7379 | 0.9872 |
60
+ | 0.0027 | 5.0 | 600 | 0.0752 | 0.8409 | 0.7955 | 0.8176 | 0.9900 |
61
+ | 0.0027 | 6.0 | 720 | 0.0658 | 0.7105 | 0.8382 | 0.7691 | 0.9887 |
62
+ | 0.0027 | 7.0 | 840 | 0.0818 | 0.8364 | 0.8045 | 0.8202 | 0.9896 |
63
+ | 0.0027 | 8.0 | 960 | 0.0791 | 0.7660 | 0.8315 | 0.7974 | 0.9892 |
64
+ | 0.0013 | 9.0 | 1080 | 0.0791 | 0.7730 | 0.8112 | 0.7917 | 0.9893 |
65
+ | 0.0013 | 10.0 | 1200 | 0.0809 | 0.8117 | 0.8135 | 0.8126 | 0.9889 |
66
+ | 0.0013 | 11.0 | 1320 | 0.0851 | 0.8085 | 0.8157 | 0.8121 | 0.9894 |
67
+ | 0.0013 | 12.0 | 1440 | 0.0875 | 0.8361 | 0.8022 | 0.8188 | 0.9894 |
68
+ | 0.0004 | 13.0 | 1560 | 0.0892 | 0.8395 | 0.8112 | 0.8251 | 0.9893 |
69
+ | 0.0004 | 14.0 | 1680 | 0.0857 | 0.7978 | 0.8337 | 0.8154 | 0.9894 |
70
+ | 0.0004 | 15.0 | 1800 | 0.0848 | 0.7931 | 0.8270 | 0.8097 | 0.9895 |
71
+ | 0.0004 | 16.0 | 1920 | 0.0867 | 0.8053 | 0.8180 | 0.8116 | 0.9896 |
72
+ | 0.0002 | 17.0 | 2040 | 0.0866 | 0.7842 | 0.8247 | 0.8039 | 0.9891 |
73
+ | 0.0002 | 18.0 | 2160 | 0.0885 | 0.7952 | 0.8202 | 0.8075 | 0.9893 |
74
+ | 0.0002 | 19.0 | 2280 | 0.0895 | 0.7948 | 0.8180 | 0.8062 | 0.9894 |
75
+ | 0.0002 | 20.0 | 2400 | 0.0907 | 0.8143 | 0.8180 | 0.8161 | 0.9893 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.21.2
81
+ - Pytorch 1.12.1+cu113
82
+ - Datasets 2.4.0
83
+ - Tokenizers 0.12.1