Nguyen Dung
commited on
Commit
•
2a670ed
1
Parent(s):
9a8ee0b
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: german-bert-finetuned-ner
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# german-bert-finetuned-ner
|
18 |
+
|
19 |
+
This model was trained from scratch on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0907
|
22 |
+
- Precision: 0.8143
|
23 |
+
- Recall: 0.8180
|
24 |
+
- F1: 0.8161
|
25 |
+
- Accuracy: 0.9893
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 20
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
56 |
+
| No log | 1.0 | 120 | 0.0715 | 0.7092 | 0.8 | 0.7518 | 0.9881 |
|
57 |
+
| No log | 2.0 | 240 | 0.0935 | 0.6588 | 0.8157 | 0.7289 | 0.9845 |
|
58 |
+
| No log | 3.0 | 360 | 0.0664 | 0.7303 | 0.7910 | 0.7594 | 0.9885 |
|
59 |
+
| No log | 4.0 | 480 | 0.0647 | 0.6691 | 0.8225 | 0.7379 | 0.9872 |
|
60 |
+
| 0.0027 | 5.0 | 600 | 0.0752 | 0.8409 | 0.7955 | 0.8176 | 0.9900 |
|
61 |
+
| 0.0027 | 6.0 | 720 | 0.0658 | 0.7105 | 0.8382 | 0.7691 | 0.9887 |
|
62 |
+
| 0.0027 | 7.0 | 840 | 0.0818 | 0.8364 | 0.8045 | 0.8202 | 0.9896 |
|
63 |
+
| 0.0027 | 8.0 | 960 | 0.0791 | 0.7660 | 0.8315 | 0.7974 | 0.9892 |
|
64 |
+
| 0.0013 | 9.0 | 1080 | 0.0791 | 0.7730 | 0.8112 | 0.7917 | 0.9893 |
|
65 |
+
| 0.0013 | 10.0 | 1200 | 0.0809 | 0.8117 | 0.8135 | 0.8126 | 0.9889 |
|
66 |
+
| 0.0013 | 11.0 | 1320 | 0.0851 | 0.8085 | 0.8157 | 0.8121 | 0.9894 |
|
67 |
+
| 0.0013 | 12.0 | 1440 | 0.0875 | 0.8361 | 0.8022 | 0.8188 | 0.9894 |
|
68 |
+
| 0.0004 | 13.0 | 1560 | 0.0892 | 0.8395 | 0.8112 | 0.8251 | 0.9893 |
|
69 |
+
| 0.0004 | 14.0 | 1680 | 0.0857 | 0.7978 | 0.8337 | 0.8154 | 0.9894 |
|
70 |
+
| 0.0004 | 15.0 | 1800 | 0.0848 | 0.7931 | 0.8270 | 0.8097 | 0.9895 |
|
71 |
+
| 0.0004 | 16.0 | 1920 | 0.0867 | 0.8053 | 0.8180 | 0.8116 | 0.9896 |
|
72 |
+
| 0.0002 | 17.0 | 2040 | 0.0866 | 0.7842 | 0.8247 | 0.8039 | 0.9891 |
|
73 |
+
| 0.0002 | 18.0 | 2160 | 0.0885 | 0.7952 | 0.8202 | 0.8075 | 0.9893 |
|
74 |
+
| 0.0002 | 19.0 | 2280 | 0.0895 | 0.7948 | 0.8180 | 0.8062 | 0.9894 |
|
75 |
+
| 0.0002 | 20.0 | 2400 | 0.0907 | 0.8143 | 0.8180 | 0.8161 | 0.9893 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.21.2
|
81 |
+
- Pytorch 1.12.1+cu113
|
82 |
+
- Datasets 2.4.0
|
83 |
+
- Tokenizers 0.12.1
|