hendoo commited on
Commit
ccb8198
1 Parent(s): 16bd2f6

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1192.80 +/- 97.32
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47079ad7e05af1af4c61a0343eab58520f3429bfd3d62e8fbef78792ea350001
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe79a391280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe79a391310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe79a3913a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe79a391430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe79a3914c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe79a391550>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe79a3915e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe79a391670>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe79a391700>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe79a391790>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe79a391820>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe79a3918b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fe79a37fa80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674159705123593644,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALL9Sz+us/I+0WQzPz3T8j/4HLm9IC3Sv4m1AL+hE3W/hAQiP91YLb9P7x8+fV4SwOGgRTzl/0E+8TcHP/Uebr/bQZ++p9g6PxcqnTxLsJE/37Z4v80oHL9Hpq89R6ndP6b/9r9vZ6k+NzjuPnwni79cTzO9JdrdPqaDMj++aas/mvLwPqEgET9SUzE/3Lu5vWgIGz1oSWK98grkPnc95D4HrIg/lzWtvz7mCr5ch6g/ucqKP09Gqr9sntg+8YY4vMSHFj7T95a+ozYav0A0nTwqqgQ/b2epPjc47j58J4u/7j7+P0uHiz4g/Cs/XTiOvTQyFcAamNK93E8XvgVMO79T75E+OOnAvpOaJkC1qVO+nR+Uv1CiFT/nY1q/AtuDvyyoSD8fZdI98Bo1P4Ux+b0cRL6/o8uqugUliT/POClAKqoEP1duQcDDjQnAfCeLv7Uz0T5T0AW+sD4FP+xb2D9G/iY/qblrv5F2Lz/ytqy+ajjRv7b26L6X6y0/ZDAWQHD38z1hpiW/DZjnvtyfdT//cpU/MEuav0x1iT66PGrA78pfv0I/8L2Wjhq/WkDjPKb/9r9vZ6k+NzjuPnwni7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADO7Nc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQf/JvAAAAAAatfW/AAAAAKwrgT0AAAAASM3gPwAAAAArsPg9AAAAAGN4/j8AAAAATyWXvQAAAAAT4fa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+UQutQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgL3u2z0AAAAAJfDrvwAAAAB/+la9AAAAAI9g3j8AAAAAH5CwPQAAAAB4K+w/AAAAAG4RNL0AAAAAPYbevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMJC6bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID4e0M9AAAAAHik3r8AAAAARLO9vQAAAAA/w/E/AAAAAJfPj70AAAAACEEBQAAAAAD9DbI9AAAAAJpw8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgL6U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFTVAPAAAAADos/2/AAAAAKs7DD4AAAAAvubcPwAAAABRTCE8AAAAAH6j7D8AAAAA8sWPvQAAAACdpfm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI7g8xh2GIuMAWyUTegDjAF0lEdAps0RP0qYq3V9lChoBkdAkdMfgm7aqWgHTegDaAhHQKbPG2v0ROF1fZQoaAZHQJB8rtXxOL1oB03oA2gIR0Cmz3GwzLwGdX2UKGgGR0CKqkQhfShKaAdN6ANoCEdAptJSDh99dHV9lChoBkdAk8ATByjpLWgHTegDaAhHQKbYurMC9yt1fZQoaAZHQIT6J4fOlftoB03oA2gIR0Cm2sllsguAdX2UKGgGR0CRJwXVbzK+aAdN6ANoCEdAptsgL7XQMXV9lChoBkdAkMGs/Y8MeGgHTegDaAhHQKbd/udf9gp1fZQoaAZHQJGQuxD9fkZoB03oA2gIR0Cm5C6C17Y1dX2UKGgGR0CNtsoBJZntaAdN6ANoCEdApuZM2tMfzXV9lChoBkdAjYp7N8ma6WgHTegDaAhHQKbmoiSJTER1fZQoaAZHQJGuPEm6XjVoB03oA2gIR0Cm6YyJbdJrdX2UKGgGR0COsSXAM2FWaAdN6ANoCEdApu/AE8q4IHV9lChoBkdAkZpe3hGYr2gHTegDaAhHQKbx0U9pyp91fZQoaAZHQJQwzO+qR2doB03oA2gIR0Cm8iQ8nuzAdX2UKGgGR0CR7Qy31BdEaAdN6ANoCEdApvUJSFXaJ3V9lChoBkdAlT6Ipc5bQmgHTegDaAhHQKb9PreIl+p1fZQoaAZHQJWpVrrPdEdoB03oA2gIR0CnAG1FQVKxdX2UKGgGR0CVQTAt4A0baAdN6ANoCEdApwDDy8SPEXV9lChoBkdAlrxLHyVfNWgHTegDaAhHQKcDnvG6wt91fZQoaAZHQJV6Q8cMmWtoB03oA2gIR0CnCfo5HVgAdX2UKGgGR0CUqAYIBzV+aAdN6ANoCEdApwwIVGkN4XV9lChoBkdAk3p5MQEpzGgHTegDaAhHQKcMXiHZbpx1fZQoaAZHQJUFZPZZjhFoB03oA2gIR0CnDzmJm/WUdX2UKGgGR0CQ6NdhRZU2aAdN6ANoCEdApxVp2St/4XV9lChoBkdAkhMtc4YJmmgHTegDaAhHQKcXgT6BRQ91fZQoaAZHQJASShdt2s9oB03oA2gIR0CnF9mGM4tIdX2UKGgGR0CRoAtSAH3UaAdN6ANoCEdApxrMJD3M6nV9lChoBkdAlKDd1EE1VGgHTegDaAhHQKchIGqPwNN1fZQoaAZHQJPsgQbuMMtoB03oA2gIR0CnI0OejEehdX2UKGgGR0CULDSeRPoFaAdN6ANoCEdApyOg1DSgG3V9lChoBkdAlNTXA2ycC2gHTegDaAhHQKcmla0QbuN1fZQoaAZHQJfs23H7xd9oB03oA2gIR0CnLNQ9JSR9dX2UKGgGR0CVtVMOwxFiaAdN6ANoCEdApy7yEeyRjnV9lChoBkdAk42mhVU+92gHTegDaAhHQKcvSJ66asp1fZQoaAZHQJgc94Oc2BJoB03oA2gIR0CnMihguyu7dX2UKGgGR0CVXQzabnX/aAdN6ANoCEdApzh3tx+8XnV9lChoBkdAk4+Uth/iHmgHTegDaAhHQKc6j9cbBGh1fZQoaAZHQJb6mVKPGQ1oB03oA2gIR0CnOuTOoo/idX2UKGgGR0CTMMAhje9BaAdN6ANoCEdApz3JNucc2nV9lChoBkdAkYVq5Gz8g2gHTegDaAhHQKdEDu4PPLR1fZQoaAZHQJLFWUeMhoxoB03oA2gIR0CnRiSGJvYOdX2UKGgGR0CWDQoX9BKMaAdN6ANoCEdAp0Z3yVfNRnV9lChoBkdAlX55gG8mKWgHTegDaAhHQKdJUGKyfL91fZQoaAZHQJYyxXmvGIdoB03oA2gIR0CnT4YVRDTjdX2UKGgGR0CUUA6ciGFjaAdN6ANoCEdAp1GhFTefqXV9lChoBkdAlB4PCQ9zO2gHTegDaAhHQKdR9c45tFd1fZQoaAZHQJSDnJyQxN9oB03oA2gIR0CnVQDOs1badX2UKGgGR0CUHHODrZ8KaAdN6ANoCEdAp1tIM8YAKnV9lChoBkdAk71E/SpiqmgHTegDaAhHQKddWtmL9/B1fZQoaAZHQJERm801qFhoB03oA2gIR0CnXa90JWvKdX2UKGgGR0CTpNVH4GliaAdN6ANoCEdAp2CXOnl4knV9lChoBkdAlJvA9A5aNmgHTegDaAhHQKdmzLIPsiV1fZQoaAZHQJO+b6k6901oB03oA2gIR0CnaN2eQMhHdX2UKGgGR0CTkKY+B6KMaAdN6ANoCEdAp2kwMjNY83V9lChoBkdAlIFVolD4QGgHTegDaAhHQKdsBxSYPXl1fZQoaAZHQJLYurYGt6poB03oA2gIR0Cncjk8q4H5dX2UKGgGR0CTuUTSLIgeaAdN6ANoCEdAp3RN6Z6Uq3V9lChoBkdAlCEHy7PIGWgHTegDaAhHQKd0pE3sHB11fZQoaAZHQJLxgTHsC1ZoB03oA2gIR0Cnd4IWxhUjdX2UKGgGR0CTxtMzdk8SaAdN6ANoCEdAp32w9aEBbXV9lChoBkdAk6ZQEZBLPGgHTegDaAhHQKd/vlMAWBV1fZQoaAZHQJMQoNZvDP5oB03oA2gIR0CngBPz4DcNdX2UKGgGR0CSEtGvOhTPaAdN6ANoCEdAp4L08ifQKXV9lChoBkdAk/pCcXm/32gHTegDaAhHQKeJLUo8ZDR1fZQoaAZHQJHUWiwjdHloB03oA2gIR0CnizqNAC4jdX2UKGgGR0CUUlxoZhrnaAdN6ANoCEdAp4uS+nIhhnV9lChoBkdAky2PUnXummgHTegDaAhHQKeOZY/Vy3l1fZQoaAZHQJCGMiD/VAloB03oA2gIR0CnlNhScbzcdX2UKGgGR0CSR0vL5h0AaAdN6ANoCEdAp5b3E87p3XV9lChoBkdAkdpQzguRLmgHTegDaAhHQKeXSVX3g1p1fZQoaAZHQJHEK1+iJwdoB03oA2gIR0CnmjmQCCBgdX2UKGgGR0CRBm2LHdXUaAdN6ANoCEdAp6B3u9eyA3V9lChoBkdAkKr9kz41xmgHTegDaAhHQKeihlmvnr91fZQoaAZHQJSPHTmW+oNoB03oA2gIR0Cnot2M0gr6dX2UKGgGR0CQoUt4A0bcaAdN6ANoCEdAp6W9/vv0AnV9lChoBkdAkld0c0cfeWgHTegDaAhHQKetEn/kvK51fZQoaAZHQJIoKlwcYIloB03oA2gIR0CnsDu8TSLJdX2UKGgGR0CSEcutfXwtaAdN6ANoCEdAp7DAFFDv3XV9lChoBkdAkFxrjxTbWWgHTegDaAhHQKe0uxDb8FZ1fZQoaAZHQJIRq9alk6NoB03oA2gIR0CnuzUG3WnTdX2UKGgGR0CTqRnOjZctaAdN6ANoCEdAp71nB1s+FHV9lChoBkdAkiXVSjxkNGgHTegDaAhHQKe9vHjp9ql1fZQoaAZHQJSblR4yGi5oB03oA2gIR0CnwK0k4WDZdX2UKGgGR0CU8Ube/Ho6aAdN6ANoCEdAp8cq0QbuMXV9lChoBkdAk2EHmq5sj2gHTegDaAhHQKfJSwxFiKB1fZQoaAZHQJSusZHd43ZoB03oA2gIR0CnyaVjZteldX2UKGgGR0CTH75Jbt7baAdN6ANoCEdAp8yaYqoZRHV9lChoBkdAj/l/foA4oGgHTegDaAhHQKfTHDWK/Eh1fZQoaAZHQJOtIvCdjG1oB03oA2gIR0Cn1UGgam4zdX2UKGgGR0CUFRWTHKfWaAdN6ANoCEdAp9WaJyhi9nV9lChoBkdAkvw+GXXyy2gHTegDaAhHQKfYqaFVT751fZQoaAZHQJRVuFqSHM5oB03oA2gIR0Cn3vV9nbqRdX2UKGgGR0CTdX8/UvwmaAdN6ANoCEdAp+E7DhtLtnV9lChoBkdAlQICzw+dLGgHTegDaAhHQKfhnPE87p51fZQoaAZHQJSHi4OMERtoB03oA2gIR0Cn5JrcTJyRdX2UKGgGR0CTpqCtihFmaAdN6ANoCEdAp+sS83++/XV9lChoBkdAkuiN03fhuWgHTegDaAhHQKftOxfOUt91fZQoaAZHQJSp2IoE0SBoB03oA2gIR0Cn7ZMdcSoPdX2UKGgGR0CTtiLIxQBQaAdN6ANoCEdAp/B+cQRPGnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e0113118fa8b2e17ec76c3460d48bda8dbcbda8a208d4ff74e44aadcb3027e7
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95536611102be668c109f9848dc78803794d63820ba527159af0019da5dff51b
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe79a391280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe79a391310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe79a3913a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe79a391430>", "_build": "<function ActorCriticPolicy._build at 0x7fe79a3914c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe79a391550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe79a3915e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe79a391670>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe79a391700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe79a391790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe79a391820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe79a3918b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe79a37fa80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674159705123593644, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALL9Sz+us/I+0WQzPz3T8j/4HLm9IC3Sv4m1AL+hE3W/hAQiP91YLb9P7x8+fV4SwOGgRTzl/0E+8TcHP/Uebr/bQZ++p9g6PxcqnTxLsJE/37Z4v80oHL9Hpq89R6ndP6b/9r9vZ6k+NzjuPnwni79cTzO9JdrdPqaDMj++aas/mvLwPqEgET9SUzE/3Lu5vWgIGz1oSWK98grkPnc95D4HrIg/lzWtvz7mCr5ch6g/ucqKP09Gqr9sntg+8YY4vMSHFj7T95a+ozYav0A0nTwqqgQ/b2epPjc47j58J4u/7j7+P0uHiz4g/Cs/XTiOvTQyFcAamNK93E8XvgVMO79T75E+OOnAvpOaJkC1qVO+nR+Uv1CiFT/nY1q/AtuDvyyoSD8fZdI98Bo1P4Ux+b0cRL6/o8uqugUliT/POClAKqoEP1duQcDDjQnAfCeLv7Uz0T5T0AW+sD4FP+xb2D9G/iY/qblrv5F2Lz/ytqy+ajjRv7b26L6X6y0/ZDAWQHD38z1hpiW/DZjnvtyfdT//cpU/MEuav0x1iT66PGrA78pfv0I/8L2Wjhq/WkDjPKb/9r9vZ6k+NzjuPnwni7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADO7Nc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQf/JvAAAAAAatfW/AAAAAKwrgT0AAAAASM3gPwAAAAArsPg9AAAAAGN4/j8AAAAATyWXvQAAAAAT4fa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+UQutQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgL3u2z0AAAAAJfDrvwAAAAB/+la9AAAAAI9g3j8AAAAAH5CwPQAAAAB4K+w/AAAAAG4RNL0AAAAAPYbevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMJC6bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID4e0M9AAAAAHik3r8AAAAARLO9vQAAAAA/w/E/AAAAAJfPj70AAAAACEEBQAAAAAD9DbI9AAAAAJpw8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgL6U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFTVAPAAAAADos/2/AAAAAKs7DD4AAAAAvubcPwAAAABRTCE8AAAAAH6j7D8AAAAA8sWPvQAAAACdpfm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI7g8xh2GIuMAWyUTegDjAF0lEdAps0RP0qYq3V9lChoBkdAkdMfgm7aqWgHTegDaAhHQKbPG2v0ROF1fZQoaAZHQJB8rtXxOL1oB03oA2gIR0Cmz3GwzLwGdX2UKGgGR0CKqkQhfShKaAdN6ANoCEdAptJSDh99dHV9lChoBkdAk8ATByjpLWgHTegDaAhHQKbYurMC9yt1fZQoaAZHQIT6J4fOlftoB03oA2gIR0Cm2sllsguAdX2UKGgGR0CRJwXVbzK+aAdN6ANoCEdAptsgL7XQMXV9lChoBkdAkMGs/Y8MeGgHTegDaAhHQKbd/udf9gp1fZQoaAZHQJGQuxD9fkZoB03oA2gIR0Cm5C6C17Y1dX2UKGgGR0CNtsoBJZntaAdN6ANoCEdApuZM2tMfzXV9lChoBkdAjYp7N8ma6WgHTegDaAhHQKbmoiSJTER1fZQoaAZHQJGuPEm6XjVoB03oA2gIR0Cm6YyJbdJrdX2UKGgGR0COsSXAM2FWaAdN6ANoCEdApu/AE8q4IHV9lChoBkdAkZpe3hGYr2gHTegDaAhHQKbx0U9pyp91fZQoaAZHQJQwzO+qR2doB03oA2gIR0Cm8iQ8nuzAdX2UKGgGR0CR7Qy31BdEaAdN6ANoCEdApvUJSFXaJ3V9lChoBkdAlT6Ipc5bQmgHTegDaAhHQKb9PreIl+p1fZQoaAZHQJWpVrrPdEdoB03oA2gIR0CnAG1FQVKxdX2UKGgGR0CVQTAt4A0baAdN6ANoCEdApwDDy8SPEXV9lChoBkdAlrxLHyVfNWgHTegDaAhHQKcDnvG6wt91fZQoaAZHQJV6Q8cMmWtoB03oA2gIR0CnCfo5HVgAdX2UKGgGR0CUqAYIBzV+aAdN6ANoCEdApwwIVGkN4XV9lChoBkdAk3p5MQEpzGgHTegDaAhHQKcMXiHZbpx1fZQoaAZHQJUFZPZZjhFoB03oA2gIR0CnDzmJm/WUdX2UKGgGR0CQ6NdhRZU2aAdN6ANoCEdApxVp2St/4XV9lChoBkdAkhMtc4YJmmgHTegDaAhHQKcXgT6BRQ91fZQoaAZHQJASShdt2s9oB03oA2gIR0CnF9mGM4tIdX2UKGgGR0CRoAtSAH3UaAdN6ANoCEdApxrMJD3M6nV9lChoBkdAlKDd1EE1VGgHTegDaAhHQKchIGqPwNN1fZQoaAZHQJPsgQbuMMtoB03oA2gIR0CnI0OejEehdX2UKGgGR0CULDSeRPoFaAdN6ANoCEdApyOg1DSgG3V9lChoBkdAlNTXA2ycC2gHTegDaAhHQKcmla0QbuN1fZQoaAZHQJfs23H7xd9oB03oA2gIR0CnLNQ9JSR9dX2UKGgGR0CVtVMOwxFiaAdN6ANoCEdApy7yEeyRjnV9lChoBkdAk42mhVU+92gHTegDaAhHQKcvSJ66asp1fZQoaAZHQJgc94Oc2BJoB03oA2gIR0CnMihguyu7dX2UKGgGR0CVXQzabnX/aAdN6ANoCEdApzh3tx+8XnV9lChoBkdAk4+Uth/iHmgHTegDaAhHQKc6j9cbBGh1fZQoaAZHQJb6mVKPGQ1oB03oA2gIR0CnOuTOoo/idX2UKGgGR0CTMMAhje9BaAdN6ANoCEdApz3JNucc2nV9lChoBkdAkYVq5Gz8g2gHTegDaAhHQKdEDu4PPLR1fZQoaAZHQJLFWUeMhoxoB03oA2gIR0CnRiSGJvYOdX2UKGgGR0CWDQoX9BKMaAdN6ANoCEdAp0Z3yVfNRnV9lChoBkdAlX55gG8mKWgHTegDaAhHQKdJUGKyfL91fZQoaAZHQJYyxXmvGIdoB03oA2gIR0CnT4YVRDTjdX2UKGgGR0CUUA6ciGFjaAdN6ANoCEdAp1GhFTefqXV9lChoBkdAlB4PCQ9zO2gHTegDaAhHQKdR9c45tFd1fZQoaAZHQJSDnJyQxN9oB03oA2gIR0CnVQDOs1badX2UKGgGR0CUHHODrZ8KaAdN6ANoCEdAp1tIM8YAKnV9lChoBkdAk71E/SpiqmgHTegDaAhHQKddWtmL9/B1fZQoaAZHQJERm801qFhoB03oA2gIR0CnXa90JWvKdX2UKGgGR0CTpNVH4GliaAdN6ANoCEdAp2CXOnl4knV9lChoBkdAlJvA9A5aNmgHTegDaAhHQKdmzLIPsiV1fZQoaAZHQJO+b6k6901oB03oA2gIR0CnaN2eQMhHdX2UKGgGR0CTkKY+B6KMaAdN6ANoCEdAp2kwMjNY83V9lChoBkdAlIFVolD4QGgHTegDaAhHQKdsBxSYPXl1fZQoaAZHQJLYurYGt6poB03oA2gIR0Cncjk8q4H5dX2UKGgGR0CTuUTSLIgeaAdN6ANoCEdAp3RN6Z6Uq3V9lChoBkdAlCEHy7PIGWgHTegDaAhHQKd0pE3sHB11fZQoaAZHQJLxgTHsC1ZoB03oA2gIR0Cnd4IWxhUjdX2UKGgGR0CTxtMzdk8SaAdN6ANoCEdAp32w9aEBbXV9lChoBkdAk6ZQEZBLPGgHTegDaAhHQKd/vlMAWBV1fZQoaAZHQJMQoNZvDP5oB03oA2gIR0CngBPz4DcNdX2UKGgGR0CSEtGvOhTPaAdN6ANoCEdAp4L08ifQKXV9lChoBkdAk/pCcXm/32gHTegDaAhHQKeJLUo8ZDR1fZQoaAZHQJHUWiwjdHloB03oA2gIR0CnizqNAC4jdX2UKGgGR0CUUlxoZhrnaAdN6ANoCEdAp4uS+nIhhnV9lChoBkdAky2PUnXummgHTegDaAhHQKeOZY/Vy3l1fZQoaAZHQJCGMiD/VAloB03oA2gIR0CnlNhScbzcdX2UKGgGR0CSR0vL5h0AaAdN6ANoCEdAp5b3E87p3XV9lChoBkdAkdpQzguRLmgHTegDaAhHQKeXSVX3g1p1fZQoaAZHQJHEK1+iJwdoB03oA2gIR0CnmjmQCCBgdX2UKGgGR0CRBm2LHdXUaAdN6ANoCEdAp6B3u9eyA3V9lChoBkdAkKr9kz41xmgHTegDaAhHQKeihlmvnr91fZQoaAZHQJSPHTmW+oNoB03oA2gIR0Cnot2M0gr6dX2UKGgGR0CQoUt4A0bcaAdN6ANoCEdAp6W9/vv0AnV9lChoBkdAkld0c0cfeWgHTegDaAhHQKetEn/kvK51fZQoaAZHQJIoKlwcYIloB03oA2gIR0CnsDu8TSLJdX2UKGgGR0CSEcutfXwtaAdN6ANoCEdAp7DAFFDv3XV9lChoBkdAkFxrjxTbWWgHTegDaAhHQKe0uxDb8FZ1fZQoaAZHQJIRq9alk6NoB03oA2gIR0CnuzUG3WnTdX2UKGgGR0CTqRnOjZctaAdN6ANoCEdAp71nB1s+FHV9lChoBkdAkiXVSjxkNGgHTegDaAhHQKe9vHjp9ql1fZQoaAZHQJSblR4yGi5oB03oA2gIR0CnwK0k4WDZdX2UKGgGR0CU8Ube/Ho6aAdN6ANoCEdAp8cq0QbuMXV9lChoBkdAk2EHmq5sj2gHTegDaAhHQKfJSwxFiKB1fZQoaAZHQJSusZHd43ZoB03oA2gIR0CnyaVjZteldX2UKGgGR0CTH75Jbt7baAdN6ANoCEdAp8yaYqoZRHV9lChoBkdAj/l/foA4oGgHTegDaAhHQKfTHDWK/Eh1fZQoaAZHQJOtIvCdjG1oB03oA2gIR0Cn1UGgam4zdX2UKGgGR0CUFRWTHKfWaAdN6ANoCEdAp9WaJyhi9nV9lChoBkdAkvw+GXXyy2gHTegDaAhHQKfYqaFVT751fZQoaAZHQJRVuFqSHM5oB03oA2gIR0Cn3vV9nbqRdX2UKGgGR0CTdX8/UvwmaAdN6ANoCEdAp+E7DhtLtnV9lChoBkdAlQICzw+dLGgHTegDaAhHQKfhnPE87p51fZQoaAZHQJSHi4OMERtoB03oA2gIR0Cn5JrcTJyRdX2UKGgGR0CTpqCtihFmaAdN6ANoCEdAp+sS83++/XV9lChoBkdAkuiN03fhuWgHTegDaAhHQKftOxfOUt91fZQoaAZHQJSp2IoE0SBoB03oA2gIR0Cn7ZMdcSoPdX2UKGgGR0CTtiLIxQBQaAdN6ANoCEdAp/B+cQRPGnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b32d373a825d26ed7c1502ef93eed10f47c87bd9ff4b6d9b5669219227b95542
3
+ size 1037368
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1192.8021322092616, "std_reward": 97.32300695571409, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T21:23:33.944672"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68a76dda354335cc26f04965e836411b1c7700aed7d51dd1e738f6469488578f
3
+ size 2521