Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1192.80 +/- 97.32
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47079ad7e05af1af4c61a0343eab58520f3429bfd3d62e8fbef78792ea350001
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe79a391280>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe79a391310>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe79a3913a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe79a391430>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe79a3914c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe79a391550>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe79a3915e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe79a391670>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe79a391700>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe79a391790>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe79a391820>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe79a3918b0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fe79a37fa80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674159705123593644,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALL9Sz+us/I+0WQzPz3T8j/4HLm9IC3Sv4m1AL+hE3W/hAQiP91YLb9P7x8+fV4SwOGgRTzl/0E+8TcHP/Uebr/bQZ++p9g6PxcqnTxLsJE/37Z4v80oHL9Hpq89R6ndP6b/9r9vZ6k+NzjuPnwni79cTzO9JdrdPqaDMj++aas/mvLwPqEgET9SUzE/3Lu5vWgIGz1oSWK98grkPnc95D4HrIg/lzWtvz7mCr5ch6g/ucqKP09Gqr9sntg+8YY4vMSHFj7T95a+ozYav0A0nTwqqgQ/b2epPjc47j58J4u/7j7+P0uHiz4g/Cs/XTiOvTQyFcAamNK93E8XvgVMO79T75E+OOnAvpOaJkC1qVO+nR+Uv1CiFT/nY1q/AtuDvyyoSD8fZdI98Bo1P4Ux+b0cRL6/o8uqugUliT/POClAKqoEP1duQcDDjQnAfCeLv7Uz0T5T0AW+sD4FP+xb2D9G/iY/qblrv5F2Lz/ytqy+ajjRv7b26L6X6y0/ZDAWQHD38z1hpiW/DZjnvtyfdT//cpU/MEuav0x1iT66PGrA78pfv0I/8L2Wjhq/WkDjPKb/9r9vZ6k+NzjuPnwni7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADO7Nc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQf/JvAAAAAAatfW/AAAAAKwrgT0AAAAASM3gPwAAAAArsPg9AAAAAGN4/j8AAAAATyWXvQAAAAAT4fa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+UQutQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgL3u2z0AAAAAJfDrvwAAAAB/+la9AAAAAI9g3j8AAAAAH5CwPQAAAAB4K+w/AAAAAG4RNL0AAAAAPYbevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMJC6bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID4e0M9AAAAAHik3r8AAAAARLO9vQAAAAA/w/E/AAAAAJfPj70AAAAACEEBQAAAAAD9DbI9AAAAAJpw8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgL6U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFTVAPAAAAADos/2/AAAAAKs7DD4AAAAAvubcPwAAAABRTCE8AAAAAH6j7D8AAAAA8sWPvQAAAACdpfm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI7g8xh2GIuMAWyUTegDjAF0lEdAps0RP0qYq3V9lChoBkdAkdMfgm7aqWgHTegDaAhHQKbPG2v0ROF1fZQoaAZHQJB8rtXxOL1oB03oA2gIR0Cmz3GwzLwGdX2UKGgGR0CKqkQhfShKaAdN6ANoCEdAptJSDh99dHV9lChoBkdAk8ATByjpLWgHTegDaAhHQKbYurMC9yt1fZQoaAZHQIT6J4fOlftoB03oA2gIR0Cm2sllsguAdX2UKGgGR0CRJwXVbzK+aAdN6ANoCEdAptsgL7XQMXV9lChoBkdAkMGs/Y8MeGgHTegDaAhHQKbd/udf9gp1fZQoaAZHQJGQuxD9fkZoB03oA2gIR0Cm5C6C17Y1dX2UKGgGR0CNtsoBJZntaAdN6ANoCEdApuZM2tMfzXV9lChoBkdAjYp7N8ma6WgHTegDaAhHQKbmoiSJTER1fZQoaAZHQJGuPEm6XjVoB03oA2gIR0Cm6YyJbdJrdX2UKGgGR0COsSXAM2FWaAdN6ANoCEdApu/AE8q4IHV9lChoBkdAkZpe3hGYr2gHTegDaAhHQKbx0U9pyp91fZQoaAZHQJQwzO+qR2doB03oA2gIR0Cm8iQ8nuzAdX2UKGgGR0CR7Qy31BdEaAdN6ANoCEdApvUJSFXaJ3V9lChoBkdAlT6Ipc5bQmgHTegDaAhHQKb9PreIl+p1fZQoaAZHQJWpVrrPdEdoB03oA2gIR0CnAG1FQVKxdX2UKGgGR0CVQTAt4A0baAdN6ANoCEdApwDDy8SPEXV9lChoBkdAlrxLHyVfNWgHTegDaAhHQKcDnvG6wt91fZQoaAZHQJV6Q8cMmWtoB03oA2gIR0CnCfo5HVgAdX2UKGgGR0CUqAYIBzV+aAdN6ANoCEdApwwIVGkN4XV9lChoBkdAk3p5MQEpzGgHTegDaAhHQKcMXiHZbpx1fZQoaAZHQJUFZPZZjhFoB03oA2gIR0CnDzmJm/WUdX2UKGgGR0CQ6NdhRZU2aAdN6ANoCEdApxVp2St/4XV9lChoBkdAkhMtc4YJmmgHTegDaAhHQKcXgT6BRQ91fZQoaAZHQJASShdt2s9oB03oA2gIR0CnF9mGM4tIdX2UKGgGR0CRoAtSAH3UaAdN6ANoCEdApxrMJD3M6nV9lChoBkdAlKDd1EE1VGgHTegDaAhHQKchIGqPwNN1fZQoaAZHQJPsgQbuMMtoB03oA2gIR0CnI0OejEehdX2UKGgGR0CULDSeRPoFaAdN6ANoCEdApyOg1DSgG3V9lChoBkdAlNTXA2ycC2gHTegDaAhHQKcmla0QbuN1fZQoaAZHQJfs23H7xd9oB03oA2gIR0CnLNQ9JSR9dX2UKGgGR0CVtVMOwxFiaAdN6ANoCEdApy7yEeyRjnV9lChoBkdAk42mhVU+92gHTegDaAhHQKcvSJ66asp1fZQoaAZHQJgc94Oc2BJoB03oA2gIR0CnMihguyu7dX2UKGgGR0CVXQzabnX/aAdN6ANoCEdApzh3tx+8XnV9lChoBkdAk4+Uth/iHmgHTegDaAhHQKc6j9cbBGh1fZQoaAZHQJb6mVKPGQ1oB03oA2gIR0CnOuTOoo/idX2UKGgGR0CTMMAhje9BaAdN6ANoCEdApz3JNucc2nV9lChoBkdAkYVq5Gz8g2gHTegDaAhHQKdEDu4PPLR1fZQoaAZHQJLFWUeMhoxoB03oA2gIR0CnRiSGJvYOdX2UKGgGR0CWDQoX9BKMaAdN6ANoCEdAp0Z3yVfNRnV9lChoBkdAlX55gG8mKWgHTegDaAhHQKdJUGKyfL91fZQoaAZHQJYyxXmvGIdoB03oA2gIR0CnT4YVRDTjdX2UKGgGR0CUUA6ciGFjaAdN6ANoCEdAp1GhFTefqXV9lChoBkdAlB4PCQ9zO2gHTegDaAhHQKdR9c45tFd1fZQoaAZHQJSDnJyQxN9oB03oA2gIR0CnVQDOs1badX2UKGgGR0CUHHODrZ8KaAdN6ANoCEdAp1tIM8YAKnV9lChoBkdAk71E/SpiqmgHTegDaAhHQKddWtmL9/B1fZQoaAZHQJERm801qFhoB03oA2gIR0CnXa90JWvKdX2UKGgGR0CTpNVH4GliaAdN6ANoCEdAp2CXOnl4knV9lChoBkdAlJvA9A5aNmgHTegDaAhHQKdmzLIPsiV1fZQoaAZHQJO+b6k6901oB03oA2gIR0CnaN2eQMhHdX2UKGgGR0CTkKY+B6KMaAdN6ANoCEdAp2kwMjNY83V9lChoBkdAlIFVolD4QGgHTegDaAhHQKdsBxSYPXl1fZQoaAZHQJLYurYGt6poB03oA2gIR0Cncjk8q4H5dX2UKGgGR0CTuUTSLIgeaAdN6ANoCEdAp3RN6Z6Uq3V9lChoBkdAlCEHy7PIGWgHTegDaAhHQKd0pE3sHB11fZQoaAZHQJLxgTHsC1ZoB03oA2gIR0Cnd4IWxhUjdX2UKGgGR0CTxtMzdk8SaAdN6ANoCEdAp32w9aEBbXV9lChoBkdAk6ZQEZBLPGgHTegDaAhHQKd/vlMAWBV1fZQoaAZHQJMQoNZvDP5oB03oA2gIR0CngBPz4DcNdX2UKGgGR0CSEtGvOhTPaAdN6ANoCEdAp4L08ifQKXV9lChoBkdAk/pCcXm/32gHTegDaAhHQKeJLUo8ZDR1fZQoaAZHQJHUWiwjdHloB03oA2gIR0CnizqNAC4jdX2UKGgGR0CUUlxoZhrnaAdN6ANoCEdAp4uS+nIhhnV9lChoBkdAky2PUnXummgHTegDaAhHQKeOZY/Vy3l1fZQoaAZHQJCGMiD/VAloB03oA2gIR0CnlNhScbzcdX2UKGgGR0CSR0vL5h0AaAdN6ANoCEdAp5b3E87p3XV9lChoBkdAkdpQzguRLmgHTegDaAhHQKeXSVX3g1p1fZQoaAZHQJHEK1+iJwdoB03oA2gIR0CnmjmQCCBgdX2UKGgGR0CRBm2LHdXUaAdN6ANoCEdAp6B3u9eyA3V9lChoBkdAkKr9kz41xmgHTegDaAhHQKeihlmvnr91fZQoaAZHQJSPHTmW+oNoB03oA2gIR0Cnot2M0gr6dX2UKGgGR0CQoUt4A0bcaAdN6ANoCEdAp6W9/vv0AnV9lChoBkdAkld0c0cfeWgHTegDaAhHQKetEn/kvK51fZQoaAZHQJIoKlwcYIloB03oA2gIR0CnsDu8TSLJdX2UKGgGR0CSEcutfXwtaAdN6ANoCEdAp7DAFFDv3XV9lChoBkdAkFxrjxTbWWgHTegDaAhHQKe0uxDb8FZ1fZQoaAZHQJIRq9alk6NoB03oA2gIR0CnuzUG3WnTdX2UKGgGR0CTqRnOjZctaAdN6ANoCEdAp71nB1s+FHV9lChoBkdAkiXVSjxkNGgHTegDaAhHQKe9vHjp9ql1fZQoaAZHQJSblR4yGi5oB03oA2gIR0CnwK0k4WDZdX2UKGgGR0CU8Ube/Ho6aAdN6ANoCEdAp8cq0QbuMXV9lChoBkdAk2EHmq5sj2gHTegDaAhHQKfJSwxFiKB1fZQoaAZHQJSusZHd43ZoB03oA2gIR0CnyaVjZteldX2UKGgGR0CTH75Jbt7baAdN6ANoCEdAp8yaYqoZRHV9lChoBkdAj/l/foA4oGgHTegDaAhHQKfTHDWK/Eh1fZQoaAZHQJOtIvCdjG1oB03oA2gIR0Cn1UGgam4zdX2UKGgGR0CUFRWTHKfWaAdN6ANoCEdAp9WaJyhi9nV9lChoBkdAkvw+GXXyy2gHTegDaAhHQKfYqaFVT751fZQoaAZHQJRVuFqSHM5oB03oA2gIR0Cn3vV9nbqRdX2UKGgGR0CTdX8/UvwmaAdN6ANoCEdAp+E7DhtLtnV9lChoBkdAlQICzw+dLGgHTegDaAhHQKfhnPE87p51fZQoaAZHQJSHi4OMERtoB03oA2gIR0Cn5JrcTJyRdX2UKGgGR0CTpqCtihFmaAdN6ANoCEdAp+sS83++/XV9lChoBkdAkuiN03fhuWgHTegDaAhHQKftOxfOUt91fZQoaAZHQJSp2IoE0SBoB03oA2gIR0Cn7ZMdcSoPdX2UKGgGR0CTtiLIxQBQaAdN6ANoCEdAp/B+cQRPGnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e0113118fa8b2e17ec76c3460d48bda8dbcbda8a208d4ff74e44aadcb3027e7
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95536611102be668c109f9848dc78803794d63820ba527159af0019da5dff51b
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe79a391280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe79a391310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe79a3913a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe79a391430>", "_build": "<function ActorCriticPolicy._build at 0x7fe79a3914c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe79a391550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe79a3915e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe79a391670>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe79a391700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe79a391790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe79a391820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe79a3918b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe79a37fa80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674159705123593644, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALL9Sz+us/I+0WQzPz3T8j/4HLm9IC3Sv4m1AL+hE3W/hAQiP91YLb9P7x8+fV4SwOGgRTzl/0E+8TcHP/Uebr/bQZ++p9g6PxcqnTxLsJE/37Z4v80oHL9Hpq89R6ndP6b/9r9vZ6k+NzjuPnwni79cTzO9JdrdPqaDMj++aas/mvLwPqEgET9SUzE/3Lu5vWgIGz1oSWK98grkPnc95D4HrIg/lzWtvz7mCr5ch6g/ucqKP09Gqr9sntg+8YY4vMSHFj7T95a+ozYav0A0nTwqqgQ/b2epPjc47j58J4u/7j7+P0uHiz4g/Cs/XTiOvTQyFcAamNK93E8XvgVMO79T75E+OOnAvpOaJkC1qVO+nR+Uv1CiFT/nY1q/AtuDvyyoSD8fZdI98Bo1P4Ux+b0cRL6/o8uqugUliT/POClAKqoEP1duQcDDjQnAfCeLv7Uz0T5T0AW+sD4FP+xb2D9G/iY/qblrv5F2Lz/ytqy+ajjRv7b26L6X6y0/ZDAWQHD38z1hpiW/DZjnvtyfdT//cpU/MEuav0x1iT66PGrA78pfv0I/8L2Wjhq/WkDjPKb/9r9vZ6k+NzjuPnwni7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADO7Nc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQf/JvAAAAAAatfW/AAAAAKwrgT0AAAAASM3gPwAAAAArsPg9AAAAAGN4/j8AAAAATyWXvQAAAAAT4fa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+UQutQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgL3u2z0AAAAAJfDrvwAAAAB/+la9AAAAAI9g3j8AAAAAH5CwPQAAAAB4K+w/AAAAAG4RNL0AAAAAPYbevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMJC6bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID4e0M9AAAAAHik3r8AAAAARLO9vQAAAAA/w/E/AAAAAJfPj70AAAAACEEBQAAAAAD9DbI9AAAAAJpw8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgL6U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFTVAPAAAAADos/2/AAAAAKs7DD4AAAAAvubcPwAAAABRTCE8AAAAAH6j7D8AAAAA8sWPvQAAAACdpfm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI7g8xh2GIuMAWyUTegDjAF0lEdAps0RP0qYq3V9lChoBkdAkdMfgm7aqWgHTegDaAhHQKbPG2v0ROF1fZQoaAZHQJB8rtXxOL1oB03oA2gIR0Cmz3GwzLwGdX2UKGgGR0CKqkQhfShKaAdN6ANoCEdAptJSDh99dHV9lChoBkdAk8ATByjpLWgHTegDaAhHQKbYurMC9yt1fZQoaAZHQIT6J4fOlftoB03oA2gIR0Cm2sllsguAdX2UKGgGR0CRJwXVbzK+aAdN6ANoCEdAptsgL7XQMXV9lChoBkdAkMGs/Y8MeGgHTegDaAhHQKbd/udf9gp1fZQoaAZHQJGQuxD9fkZoB03oA2gIR0Cm5C6C17Y1dX2UKGgGR0CNtsoBJZntaAdN6ANoCEdApuZM2tMfzXV9lChoBkdAjYp7N8ma6WgHTegDaAhHQKbmoiSJTER1fZQoaAZHQJGuPEm6XjVoB03oA2gIR0Cm6YyJbdJrdX2UKGgGR0COsSXAM2FWaAdN6ANoCEdApu/AE8q4IHV9lChoBkdAkZpe3hGYr2gHTegDaAhHQKbx0U9pyp91fZQoaAZHQJQwzO+qR2doB03oA2gIR0Cm8iQ8nuzAdX2UKGgGR0CR7Qy31BdEaAdN6ANoCEdApvUJSFXaJ3V9lChoBkdAlT6Ipc5bQmgHTegDaAhHQKb9PreIl+p1fZQoaAZHQJWpVrrPdEdoB03oA2gIR0CnAG1FQVKxdX2UKGgGR0CVQTAt4A0baAdN6ANoCEdApwDDy8SPEXV9lChoBkdAlrxLHyVfNWgHTegDaAhHQKcDnvG6wt91fZQoaAZHQJV6Q8cMmWtoB03oA2gIR0CnCfo5HVgAdX2UKGgGR0CUqAYIBzV+aAdN6ANoCEdApwwIVGkN4XV9lChoBkdAk3p5MQEpzGgHTegDaAhHQKcMXiHZbpx1fZQoaAZHQJUFZPZZjhFoB03oA2gIR0CnDzmJm/WUdX2UKGgGR0CQ6NdhRZU2aAdN6ANoCEdApxVp2St/4XV9lChoBkdAkhMtc4YJmmgHTegDaAhHQKcXgT6BRQ91fZQoaAZHQJASShdt2s9oB03oA2gIR0CnF9mGM4tIdX2UKGgGR0CRoAtSAH3UaAdN6ANoCEdApxrMJD3M6nV9lChoBkdAlKDd1EE1VGgHTegDaAhHQKchIGqPwNN1fZQoaAZHQJPsgQbuMMtoB03oA2gIR0CnI0OejEehdX2UKGgGR0CULDSeRPoFaAdN6ANoCEdApyOg1DSgG3V9lChoBkdAlNTXA2ycC2gHTegDaAhHQKcmla0QbuN1fZQoaAZHQJfs23H7xd9oB03oA2gIR0CnLNQ9JSR9dX2UKGgGR0CVtVMOwxFiaAdN6ANoCEdApy7yEeyRjnV9lChoBkdAk42mhVU+92gHTegDaAhHQKcvSJ66asp1fZQoaAZHQJgc94Oc2BJoB03oA2gIR0CnMihguyu7dX2UKGgGR0CVXQzabnX/aAdN6ANoCEdApzh3tx+8XnV9lChoBkdAk4+Uth/iHmgHTegDaAhHQKc6j9cbBGh1fZQoaAZHQJb6mVKPGQ1oB03oA2gIR0CnOuTOoo/idX2UKGgGR0CTMMAhje9BaAdN6ANoCEdApz3JNucc2nV9lChoBkdAkYVq5Gz8g2gHTegDaAhHQKdEDu4PPLR1fZQoaAZHQJLFWUeMhoxoB03oA2gIR0CnRiSGJvYOdX2UKGgGR0CWDQoX9BKMaAdN6ANoCEdAp0Z3yVfNRnV9lChoBkdAlX55gG8mKWgHTegDaAhHQKdJUGKyfL91fZQoaAZHQJYyxXmvGIdoB03oA2gIR0CnT4YVRDTjdX2UKGgGR0CUUA6ciGFjaAdN6ANoCEdAp1GhFTefqXV9lChoBkdAlB4PCQ9zO2gHTegDaAhHQKdR9c45tFd1fZQoaAZHQJSDnJyQxN9oB03oA2gIR0CnVQDOs1badX2UKGgGR0CUHHODrZ8KaAdN6ANoCEdAp1tIM8YAKnV9lChoBkdAk71E/SpiqmgHTegDaAhHQKddWtmL9/B1fZQoaAZHQJERm801qFhoB03oA2gIR0CnXa90JWvKdX2UKGgGR0CTpNVH4GliaAdN6ANoCEdAp2CXOnl4knV9lChoBkdAlJvA9A5aNmgHTegDaAhHQKdmzLIPsiV1fZQoaAZHQJO+b6k6901oB03oA2gIR0CnaN2eQMhHdX2UKGgGR0CTkKY+B6KMaAdN6ANoCEdAp2kwMjNY83V9lChoBkdAlIFVolD4QGgHTegDaAhHQKdsBxSYPXl1fZQoaAZHQJLYurYGt6poB03oA2gIR0Cncjk8q4H5dX2UKGgGR0CTuUTSLIgeaAdN6ANoCEdAp3RN6Z6Uq3V9lChoBkdAlCEHy7PIGWgHTegDaAhHQKd0pE3sHB11fZQoaAZHQJLxgTHsC1ZoB03oA2gIR0Cnd4IWxhUjdX2UKGgGR0CTxtMzdk8SaAdN6ANoCEdAp32w9aEBbXV9lChoBkdAk6ZQEZBLPGgHTegDaAhHQKd/vlMAWBV1fZQoaAZHQJMQoNZvDP5oB03oA2gIR0CngBPz4DcNdX2UKGgGR0CSEtGvOhTPaAdN6ANoCEdAp4L08ifQKXV9lChoBkdAk/pCcXm/32gHTegDaAhHQKeJLUo8ZDR1fZQoaAZHQJHUWiwjdHloB03oA2gIR0CnizqNAC4jdX2UKGgGR0CUUlxoZhrnaAdN6ANoCEdAp4uS+nIhhnV9lChoBkdAky2PUnXummgHTegDaAhHQKeOZY/Vy3l1fZQoaAZHQJCGMiD/VAloB03oA2gIR0CnlNhScbzcdX2UKGgGR0CSR0vL5h0AaAdN6ANoCEdAp5b3E87p3XV9lChoBkdAkdpQzguRLmgHTegDaAhHQKeXSVX3g1p1fZQoaAZHQJHEK1+iJwdoB03oA2gIR0CnmjmQCCBgdX2UKGgGR0CRBm2LHdXUaAdN6ANoCEdAp6B3u9eyA3V9lChoBkdAkKr9kz41xmgHTegDaAhHQKeihlmvnr91fZQoaAZHQJSPHTmW+oNoB03oA2gIR0Cnot2M0gr6dX2UKGgGR0CQoUt4A0bcaAdN6ANoCEdAp6W9/vv0AnV9lChoBkdAkld0c0cfeWgHTegDaAhHQKetEn/kvK51fZQoaAZHQJIoKlwcYIloB03oA2gIR0CnsDu8TSLJdX2UKGgGR0CSEcutfXwtaAdN6ANoCEdAp7DAFFDv3XV9lChoBkdAkFxrjxTbWWgHTegDaAhHQKe0uxDb8FZ1fZQoaAZHQJIRq9alk6NoB03oA2gIR0CnuzUG3WnTdX2UKGgGR0CTqRnOjZctaAdN6ANoCEdAp71nB1s+FHV9lChoBkdAkiXVSjxkNGgHTegDaAhHQKe9vHjp9ql1fZQoaAZHQJSblR4yGi5oB03oA2gIR0CnwK0k4WDZdX2UKGgGR0CU8Ube/Ho6aAdN6ANoCEdAp8cq0QbuMXV9lChoBkdAk2EHmq5sj2gHTegDaAhHQKfJSwxFiKB1fZQoaAZHQJSusZHd43ZoB03oA2gIR0CnyaVjZteldX2UKGgGR0CTH75Jbt7baAdN6ANoCEdAp8yaYqoZRHV9lChoBkdAj/l/foA4oGgHTegDaAhHQKfTHDWK/Eh1fZQoaAZHQJOtIvCdjG1oB03oA2gIR0Cn1UGgam4zdX2UKGgGR0CUFRWTHKfWaAdN6ANoCEdAp9WaJyhi9nV9lChoBkdAkvw+GXXyy2gHTegDaAhHQKfYqaFVT751fZQoaAZHQJRVuFqSHM5oB03oA2gIR0Cn3vV9nbqRdX2UKGgGR0CTdX8/UvwmaAdN6ANoCEdAp+E7DhtLtnV9lChoBkdAlQICzw+dLGgHTegDaAhHQKfhnPE87p51fZQoaAZHQJSHi4OMERtoB03oA2gIR0Cn5JrcTJyRdX2UKGgGR0CTpqCtihFmaAdN6ANoCEdAp+sS83++/XV9lChoBkdAkuiN03fhuWgHTegDaAhHQKftOxfOUt91fZQoaAZHQJSp2IoE0SBoB03oA2gIR0Cn7ZMdcSoPdX2UKGgGR0CTtiLIxQBQaAdN6ANoCEdAp/B+cQRPGnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b32d373a825d26ed7c1502ef93eed10f47c87bd9ff4b6d9b5669219227b95542
|
3 |
+
size 1037368
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1192.8021322092616, "std_reward": 97.32300695571409, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T21:23:33.944672"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68a76dda354335cc26f04965e836411b1c7700aed7d51dd1e738f6469488578f
|
3 |
+
size 2521
|