File size: 9,546 Bytes
f4ab924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
917a9a2
 
 
c41af63
 
d913537
24435f7
c41af63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84fadfc
 
 
 
c41af63
 
917a9a2
 
 
 
4e84cf2
c28f56a
 
 
 
 
 
 
 
 
 
 
917a9a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24435f7
917a9a2
 
 
 
 
 
 
 
 
 
b2e7a4e
 
 
225f817
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
tags:
- autotrain
- token-classification
language:
- en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- hemangjoshi37a/autotrain-data-ratnakar_1000_sample_curated
co2_eq_emissions:
  emissions: 2.1802563684907916
---

# Model Trained Using AutoTrain

- Problem type: Entity Extraction
- Model ID: 1474454086
- CO2 Emissions (in grams): 2.1803

## Validation Metrics

- Loss: 0.177
- Accuracy: 0.957
- Precision: 0.839
- Recall: 0.888
- F1: 0.863

## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/hemangjoshi37a/autotrain-ratnakar_1000_sample_curated-1474454086
```

Or Python API:

```
from transformers import AutoModelForTokenClassification, AutoTokenizer

model = AutoModelForTokenClassification.from_pretrained("hemangjoshi37a/autotrain-ratnakar_1000_sample_curated-1474454086", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("hemangjoshi37a/autotrain-ratnakar_1000_sample_curated-1474454086", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
```


# GitHub Link to this project : [Telegram Trade Msg Backtest ML](https://github.com/hemangjoshi37a/TelegramTradeMsgBacktestML)

# Need custom model for your application? : Place a order on hjLabs.in : [Custom Token Classification or Named Entity Recognition (NER) model as in Natural Language Processing (NLP) Machine Learning](https://hjlabs.in/product/custom-token-classification-or-named-entity-recognition-ner-model-as-in-natural-language-processing-nlp-machine-learning/)

## What this repository contains? :

1. Label data using LabelStudio NER(Named Entity Recognition or Token Classification) tool.
 ![Screenshot from 2022-09-30 12-28-50](https://user-images.githubusercontent.com/12392345/193394190-3ad215d1-3205-4af3-949e-6d95cf866c6c.png) convert to  ![Screenshot from 2022-09-30 18-59-14](https://user-images.githubusercontent.com/12392345/193394213-9bb936e7-34ea-4cbc-9132-80c7e5a006d7.png)

2. Convert LabelStudio CSV or JSON to HuggingFace-autoTrain dataset conversion script
![Screenshot from 2022-10-01 10-36-03](https://user-images.githubusercontent.com/12392345/193394227-32e293d4-6736-4e71-b687-b0c2fcad732c.png)

3. Train NER model on Hugginface-autoTrain.
 ![Screenshot from 2022-10-01 10-38-24](https://user-images.githubusercontent.com/12392345/193394247-bf51da86-45bb-41b4-b4da-3de86014e6a5.png)

4. Use Hugginface-autoTrain model to predict labels on new data in LabelStudio using LabelStudio-ML-Backend.
 ![Screenshot from 2022-10-01 10-41-07](https://user-images.githubusercontent.com/12392345/193394251-bfba07d4-c56b-4fe8-ba7f-08a1c69f0e2c.png)
 ![Screenshot from 2022-10-01 10-42-36](https://user-images.githubusercontent.com/12392345/193394261-df4bc8f8-9ffd-4819-ba26-04fddbba8e7b.png)
 ![Screenshot from 2022-10-01 10-44-56](https://user-images.githubusercontent.com/12392345/193394267-c5a111c3-8d00-4d6f-b3c6-0ea82e4ac474.png)

5. Define python function to predict labels using Hugginface-autoTrain model.
 ![Screenshot from 2022-10-01 10-47-08](https://user-images.githubusercontent.com/12392345/193394278-81389606-f690-454a-bb2b-ef3f1db39571.png)
![Screenshot from 2022-10-01 10-47-25](https://user-images.githubusercontent.com/12392345/193394288-27a0c250-41af-48b1-9c57-c146dc51da1d.png)

6. Only label new data from newly predicted-labels-dataset that has falsified labels.
 ![Screenshot from 2022-09-30 22-47-23](https://user-images.githubusercontent.com/12392345/193394294-fdfaf40a-c9cd-4c2d-836e-1878b503a668.png)

7. Backtest Truely labelled dataset against real historical data of the stock using zerodha kiteconnect and jugaad_trader.
 ![Screenshot from 2022-10-01 00-05-55](https://user-images.githubusercontent.com/12392345/193394303-137c2a2a-3341-4be3-8ece-5191669ec53a.png)

8. Evaluate total gained percentage since inception summation-wise and compounded and plot.
 ![Screenshot from 2022-10-01 00-06-59](https://user-images.githubusercontent.com/12392345/193394308-446eddd9-c5d1-47e3-a231-9edc620284bb.png)

9. Listen to telegram channel for new LIVE messages using telegram API for algotrading.
 ![Screenshot from 2022-10-01 00-09-29](https://user-images.githubusercontent.com/12392345/193394319-8cc915b7-216e-4e05-a7bf-28360b17de99.png)

10. Serve the app as flask web API for web request and respond to it as labelled tokens.
 ![Screenshot from 2022-10-01 00-12-12](https://user-images.githubusercontent.com/12392345/193394323-822c2a59-ca72-45b1-abca-a6e5df3364b0.png)

11. Outperforming or underperforming results of the telegram channel tips against exchange index by percentage.
 ![Screenshot from 2022-10-01 11-16-27](https://user-images.githubusercontent.com/12392345/193394685-53235198-04f8-4d3c-a341-535dd9093252.png)



Place a custom order on hjLabs.in : [https://hjLabs.in](https://hjlabs.in/?product=custom-algotrading-software-for-zerodha-and-angel-w-source-code)


----------------------------------------------------------------------

### Social Media :
* [WhatsApp/917016525813](https://wa.me/917016525813)
* [telegram/hjlabs](https://t.me/hjlabs) 
* [Gmail/[email protected]](mailto:[email protected])
* [Facebook/hemangjoshi37](https://www.facebook.com/hemangjoshi37/)
* [Twitter/HemangJ81509525](https://twitter.com/HemangJ81509525)
* [LinkedIn/hemang-joshi-046746aa](https://www.linkedin.com/in/hemang-joshi-046746aa/)
* [Tumblr/hemangjoshi37a-blog](https://www.tumblr.com/blog/hemangjoshi37a-blog)
* [Pinterest/hemangjoshi37a](https://in.pinterest.com/hemangjoshi37a/)
* [Blogger/hemangjoshi](http://hemangjoshi.blogspot.com/)
* [Instagram/hemangjoshi37](https://www.instagram.com/hemangjoshi37/)
  
### Checkout Our Other Repositories

- [pyPortMan](https://github.com/hemangjoshi37a/pyPortMan)
- [transformers_stock_prediction](https://github.com/hemangjoshi37a/transformers_stock_prediction)
- [TrendMaster](https://github.com/hemangjoshi37a/TrendMaster)
- [hjAlgos_notebooks](https://github.com/hemangjoshi37a/hjAlgos_notebooks)
- [AutoCut](https://github.com/hemangjoshi37a/AutoCut)
- [My_Projects](https://github.com/hemangjoshi37a/My_Projects)
- [Cool Arduino and ESP8266 or NodeMCU Projects](https://github.com/hemangjoshi37a/my_Arduino)
- [Telegram Trade Msg Backtest ML](https://github.com/hemangjoshi37a/TelegramTradeMsgBacktestML)

### Checkout Our Other Products

- [WiFi IoT LED Matrix Display](https://hjlabs.in/product/wifi-iot-led-display)
- [SWiBoard WiFi Switch Board IoT Device](https://hjlabs.in/product/swiboard-wifi-switch-board-iot-device)
- [Electric Bicycle](https://hjlabs.in/product/electric-bicycle)
- [Product 3D Design Service with Solidworks](https://hjlabs.in/product/product-3d-design-with-solidworks/)
- [AutoCut : Automatic Wire Cutter Machine](https://hjlabs.in/product/automatic-wire-cutter-machine/)
- [Custom AlgoTrading Software Coding Services](https://hjlabs.in/product/custom-algotrading-software-for-zerodha-and-angel-w-source-code//)
- [SWiBoard :Tasmota MQTT Control App](https://play.google.com/store/apps/details?id=in.hjlabs.swiboard)
- [Custom Token Classification or Named Entity Recognition (NER) model as in Natural Language Processing (NLP) Machine Learning](https://hjlabs.in/product/custom-token-classification-or-named-entity-recognition-ner-model-as-in-natural-language-processing-nlp-machine-learning/)

## Some Cool Arduino and ESP8266 (or NodeMCU) IoT projects:
- [IoT_LED_over_ESP8266_NodeMCU : Turn LED on and off using web server hosted on a nodemcu or esp8266](https://github.com/hemangjoshi37a/my_Arduino/tree/master/IoT_LED_over_ESP8266_NodeMCU)
- [ESP8266_NodeMCU_BasicOTA : Simple OTA (Over The Air) upload code from Arduino IDE using WiFi to NodeMCU or ESP8266](https://github.com/hemangjoshi37a/my_Arduino/tree/master/ESP8266_NodeMCU_BasicOTA)  
- [IoT_CSV_SD : Read analog value of Voltage and Current and write it to SD Card in CSV format for Arduino, ESP8266, NodeMCU etc](https://github.com/hemangjoshi37a/my_Arduino/tree/master/IoT_CSV_SD)  
- [Honeywell_I2C_Datalogger : Log data in A SD Card from a Honeywell I2C HIH8000 or HIH6000 series sensor having external I2C RTC clock](https://github.com/hemangjoshi37a/my_Arduino/tree/master/Honeywell_I2C_Datalogger)
- [IoT_Load_Cell_using_ESP8266_NodeMC : Read ADC value from High Precision 12bit ADS1015 ADC Sensor and Display on SSD1306 SPI Display as progress bar for Arduino or ESP8266 or NodeMCU](https://github.com/hemangjoshi37a/my_Arduino/tree/master/IoT_Load_Cell_using_ESP8266_NodeMC)
- [IoT_SSD1306_ESP8266_NodeMCU : Read from High Precision 12bit ADC seonsor ADS1015 and display to SSD1306 SPI as progress bar in ESP8266 or NodeMCU or Arduino](https://github.com/hemangjoshi37a/my_Arduino/tree/master/IoT_SSD1306_ESP8266_NodeMCU)  

## Our HuggingFace Models :
- [hemangjoshi37a/autotrain-ratnakar_1000_sample_curated-1474454086 : Stock tip message NER(Named Entity Recognition or Token Classification) using HUggingFace-AutoTrain and LabelStudio and Ratnakar Securities Pvt. Ltd.](https://huggingface.co/hemangjoshi37a/autotrain-ratnakar_1000_sample_curated-1474454086)

## Our HuggingFace Datasets :
- [hemangjoshi37a/autotrain-data-ratnakar_1000_sample_curated : Stock tip message NER(Named Entity Recognition or Token Classification) using HUggingFace-AutoTrain and LabelStudio and Ratnakar Securities Pvt. Ltd.](https://huggingface.co/datasets/hemangjoshi37a/autotrain-data-ratnakar_1000_sample_curated)