hemakumari commited on
Commit
77c33c7
1 Parent(s): 6a5d8d5

Model save

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -32,7 +32,7 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 1.2124
36
  - Accuracy: 0.6667
37
 
38
  ## Model description
@@ -52,24 +52,24 @@ More information needed
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
55
- - learning_rate: 5e-05
56
- - train_batch_size: 64
57
- - eval_batch_size: 64
58
  - seed: 42
59
  - gradient_accumulation_steps: 4
60
- - total_train_batch_size: 256
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
- - lr_scheduler_warmup_ratio: 0.1
64
  - num_epochs: 3
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
- | No log | 0.92 | 3 | 1.2355 | 0.6092 |
71
- | No log | 1.85 | 6 | 1.2133 | 0.6552 |
72
- | No log | 2.77 | 9 | 1.2124 | 0.6667 |
73
 
74
 
75
  ### Framework versions
 
32
 
33
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 1.2039
36
  - Accuracy: 0.6667
37
 
38
  ## Model description
 
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
55
+ - learning_rate: 2e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
  - seed: 42
59
  - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 128
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.01
64
  - num_epochs: 3
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | No log | 0.96 | 6 | 1.2279 | 0.6322 |
71
+ | 0.4158 | 1.92 | 12 | 1.2115 | 0.6437 |
72
+ | 0.4158 | 2.88 | 18 | 1.2039 | 0.6667 |
73
 
74
 
75
  ### Framework versions