|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" CharacterBERT model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
CHARACTER_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"helboukkouri/character-bert": "https://huggingface.co/helboukkouri/character-bert/resolve/main/config.json", |
|
"helboukkouri/character-bert-medical": "https://huggingface.co/helboukkouri/character-bert-medical/resolve/main/config.json", |
|
|
|
} |
|
|
|
|
|
class CharacterBertConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`CharacterBertModel`]. It is |
|
used to instantiate an CharacterBERT model according to the specified arguments, defining the model architecture. |
|
Instantiating a configuration with the defaults will yield a similar configuration to that of the CharacterBERT |
|
[helboukkouri/character-bert](https://huggingface.co/helboukkouri/character-bert) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model |
|
outputs. Read the documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
character_embeddings_dim (`int`, *optional*, defaults to `16`): |
|
The size of the character embeddings. |
|
cnn_activation (`str`, *optional*, defaults to `"relu"`): |
|
The activation function to apply to the cnn representations. |
|
cnn_filters (: |
|
obj:*list(list(int))*, *optional*, defaults to `[[1, 32], [2, 32], [3, 64], [4, 128], [5, 256], [6, 512], [7, 1024]]`): The list of CNN filters to use in the CharacterCNN module. |
|
num_highway_layers (`int`, *optional*, defaults to `2`): |
|
The number of Highway layers to apply to the CNNs output. |
|
max_word_length (`int`, *optional*, defaults to `50`): |
|
The maximum token length in characters (actually, in bytes as any non-ascii characters will be converted to |
|
a sequence of utf-8 bytes). |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, |
|
`"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 512): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
type_vocab_size (`int`, *optional*, defaults to 2): |
|
The vocabulary size of the `token_type_ids` passed when calling |
|
[`CharacterBertModel`] or [`TFCharacterBertModel`]. |
|
mlm_vocab_size (`int`, *optional*, defaults to 100000): |
|
Size of the output vocabulary for MLM. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
|
|
Example: |
|
|
|
```python |
|
|
|
``` |
|
|
|
>>> from transformers import CharacterBertModel, CharacterBertConfig |
|
|
|
>>> # Initializing a CharacterBERT helboukkouri/character-bert style configuration |
|
>>> configuration = CharacterBertConfig() |
|
|
|
>>> # Initializing a model from the helboukkouri/character-bert style configuration |
|
>>> model = CharacterBertModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
""" |
|
model_type = "character_bert" |
|
|
|
def __init__( |
|
self, |
|
character_embeddings_dim=16, |
|
cnn_activation="relu", |
|
cnn_filters=None, |
|
num_highway_layers=2, |
|
max_word_length=50, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=2, |
|
mlm_vocab_size=100000, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
is_encoder_decoder=False, |
|
use_cache=True, |
|
**kwargs |
|
): |
|
tie_word_embeddings = kwargs.pop("tie_word_embeddings", False) |
|
if tie_word_embeddings: |
|
raise ValueError( |
|
"Cannot tie word embeddings in CharacterBERT. Please set " "`config.tie_word_embeddings=False`." |
|
) |
|
super().__init__( |
|
type_vocab_size=type_vocab_size, |
|
layer_norm_eps=layer_norm_eps, |
|
use_cache=use_cache, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
if cnn_filters is None: |
|
cnn_filters = [[1, 32], [2, 32], [3, 64], [4, 128], [5, 256], [6, 512], [7, 1024]] |
|
self.character_embeddings_dim = character_embeddings_dim |
|
self.cnn_activation = cnn_activation |
|
self.cnn_filters = cnn_filters |
|
self.num_highway_layers = num_highway_layers |
|
self.max_word_length = max_word_length |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.mlm_vocab_size = mlm_vocab_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.initializer_range = initializer_range |